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The test specification language FQL describes relevant test goals as regular expressions 
over program locations, such that each matching test case has an execution path matching 
this expression. To specify not only test goals but entire suites, FQL describes families of 
related test goals by regular expressions over extended alphabets: Herein, each symbol 
corresponds to a regular expression over program locations, and thus, a word in an 
FQL expression corresponds to a regular expression describing a single test goal. In this 
paper we provide a systematic foundation for FQL test specifications, which are in fact 
rational sets of regular languages (RSRLs). To address practically relevant problems like 
query optimization, we tackle open questions about RSRLs: We settle closure properties of 
general and finite RSRLs under common set theoretic operations. We also prove complexity 
results for checking equivalence and inclusion of star-free RSRLs, and for deciding whether 
a regular language is a member of a general or star-free RSRL.

© 2015 Published by Elsevier B.V.

1. Introduction

Despite the success of model checking and theorem proving, software testing retains a dominant role in industrial prac-
tice. In fact, state-of-the-art development guidelines such as the avionic standard DO-178B [1] are heavily dependent on 
test coverage criteria. It is therefore quite surprising that the formal specification of coverage criteria has been a blind spot 
in the formal methods and software engineering communities for a long time.

In a recent thread of papers [2–7], we have addressed this situation and introduced the Fshell Query Language (FQL). FQL 
allows to specify and tailor coverage criteria, and has been implemented in Fshell [6] and CPA/Tiger [7], tools to generate 
matching test suites for ANSI C programs. At the semantic core of FQL, test goals are described as regular expressions the 
alphabet of which are the edges of the program’s control-flow graph (CFG). For example, to cover a particular CFG edge c, 
one can use the regular expression �� c �� . Importantly, however, a coverage criterion usually induces not just a single test 
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goal, but a (possibly large) number of test goals, e.g., all basic blocks of a program. FQL therefore employs regular languages 
which can express sets of regular expressions.

To this end, the alphabet contains not only the CFG edges but also postponed regular expressions over these edges, delim-
ited by quotes. For example, “��” (a + b + c + d) “��” describes the language {“��” a “��”, “��” b “��”, “��” c “��”, “��” 
d “��”}. Each of these words yields a regular expression, e.g., �� a �� , that will in turn serve as test goal. Following [8], 
we call such languages rational sets of regular languages (RSRLs).

The goal of this paper is to initiate a systematic theoretical study of RSRLs, considering closure properties and complexity 
of common set-theoretic operations. Thus, this paper is a first step towards a systematic foundation of FQL. In particular, 
a good understanding of set-theoretic operations is necessary for systematic algorithmic optimization and manipulation of 
test specifications. First results on query optimization for FQL have been obtained in [7].

Contributions and organization Our results on RSRLs encompass closure properties for set theoretic operations and variants 
thereof as well as complexity results on decision problems, justifying the design of FQL, as detailed in Section 3. Our paper 
is organized as follows:

– We formally introduce RSRLs in Section 2, then, sketch FQL and clarify the questions leading to the presented research 
in Section 3, and, then, survey related work in Section 4.

– Closure properties (Section 5). We consider general and finite RSRLs together with the operators Kleene star, product, 
complement, union, intersection, set difference, and symmetric difference. We also consider the case of finite RSRLs 
with a fixed language substitution ϕ , as this case is of particular interest for testing applications (cf. Section 3).

– Complexity results (Section 6). We discuss the complexity to decide equivalence, inclusion, and membership for Kleene-
star free RSRLs. To prove an upper bound on the complexity of the membership problem for general RSRLs, we expand 
the decidability proof in [8] and give a first complete and explicit algorithm for the problem.

– Justification of FQL Design (Section 7). We conclude in discussing how our results reflect back on the design of FQL. In 
particular, our theoretical results confirm the decision to allow only Kleene-star free RSRLs in FQL.

A preliminary version of this work has been published in [9]; however, this older version was lacking almost all proofs. 
In contrast, the current paper contains full proof details on all results presented in Sections 5 and 6.

2. Rational sets of regular languages

One of the most fundamental concepts in this paper are regular language substitutions, which map symbols in one 
alphabet to regular languages over another alphabet.

Definition 1 (Regular language substitution). Given a finite alphabet �, let Reg(�) denote the set of regular languages over �. 
Then, given alphabets � and �, a regular language substitution ϕ : � → Reg(�) maps each symbol δ ∈ � to a regular 
language ϕ(δ) ∈ Reg(�). We extend ϕ to words w ∈ �+ with ϕ(δ · w) = ϕ(δ) ·ϕ(w), and set ϕ(L) = ⋃

w∈L ϕ(w) for L ⊆ �+ .

Please note that the extension of a regular language substitution to words yields regular languages again. Before we 
define rational sets of regular languages, we define rational sets of a monoid in general.

Definition 2 (Rational sets of a monoid). The class of rational sets of a monoid (M, ·, e) is the smallest subclass of M such 
that (i) ∅ is a rational set, (ii) each singleton set {m} for m ∈ M is a rational set, and if N1 and N2 are rational sets (iii) then 
N1 · N2 is a rational set where · on rational sets is defined by the point-wise application of the monoid’s · operation, 
(iv) N1 ∪ N2 is a rational set, and (v) N�

1 is a rational set [10,11].

Definition 3 (Rational Sets of Regular Languages, RSRLs). (See [8].) Given a finite alphabet �, the rational sets of regular languages
are the rational sets over the monoid (Reg(�), ·, {ε}), where ε denotes the empty word.

Definition 4 (Representation of RSRLs). (See [8].) We represent an RSRL R as a tuple (K , ϕ), where K ⊆ �+ is a regular 
language over a finite alphabet �, and ϕ is a regular language substitution ϕ : � → Reg(�), such that R = {ϕ(w) | w ∈ K }. 
We say that the RSRL R is Kleene-star free, if R is finite. That means that there exists a tuple (K , ϕ) such that (K , ϕ) = R
where K is finite (and hence Kleene-star free).

Note that we require a regular language K ⊆ �+ to exclude the empty word as the extension of regular language 
substitutions from symbols to words is not defined for the empty word. In the next two lemmas, we show that each RSRL 
can be represented by a tuple (K , ϕ) and that each tuple (K , ϕ) represents an RSRL.

Lemma 5 (Representation of RSRLs, part 1). Any RSRL R can be represented as a tuple (K , ϕ).
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