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1. Introduction

In a distributed system, several agents interact to generate a global behavior. This interaction is usually specified in terms
of scenarios, using message sequence charts (MSCs) [23]. Protocol specifications typically include timing requirements for
messages and descriptions of how to recover from timeouts, so a natural and useful extension to MSCs is to add timing
constraints between pairs of events, yielding time-constrained MSCs (TCMSCs) [8,1].

Infinite collections of MSCs are typically described using message sequence graphs (MSGs) [23,9]. An MSG, a finite
directed graph with nodes labeled by MSCs, is the most basic form of a High-level Message Sequence Chart (HMSC) [26].
Any path through the graph generates a new MSC by concatenating the MSCs seen along the path. Thus, the set of all paths
through an MSG generates a possibly infinite collection of MSCs. In this article, we generalize MSGs to time-constrained
MSGs (TCMSGs), where nodes are labeled by TCMSCs and edges may have additional time constraints between nodes. Thus,
TCMSGs generate infinite collections of time-constrained scenarios, i.e., TCMSCs. This forms our basic model of specification.

A natural system model in this setting is a timed message-passing automaton (timed MPA), a set of communicating
finite-state machines equipped with clocks that are used to guard transitions, as in timed automata [11]. Just as timed
words are used to describe the runs of timed automata, the interactions exhibited by timed MPAs can be described using
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timed MSCs—MSCs in which each event is assigned an explicit timestamp. However, the global state space of a timed MPA
in fact defines a timed automaton over a distributed alphabet and in this paper we focus on this simplified global view of
timed message-passing systems, though our results go through smoothly for the distributed system model as well. Thus,
our main interest in this paper lies in considering a distributed specification (formalized using TCMSGs) and comparing it
against a global timed implementation.

Our aim is to check if all timed MSCs accepted by a timed MPA conform to the time constraints given by a TCMSG
specification. This problem can naturally be seen as comprising of two parts. The first asks if for a given timed MPA A and
TCMSG G, every timed execution exhibited by A is in the specification. Indeed, this is the standard model-checking question
for timed MPAs. The second part, the coverage problem, asks if every TCMSC generated by a given TCMSG can be witnessed
by some timed execution of the TMPA. To make the problem tractable, we focus on locally synchronized TCMSGs—those for
which the underlying behavior is guaranteed to be regular [22].

In general, the model checking problem above corresponds to checking inclusion for timed languages, which is known to
be undecidable even for timed regular languages [6]. Fortunately, it turns out that timing constraints in a TCMSG correspond
to a very restricted use of clocks. This allows us to associate with each TCMSG an extended event clock automaton that
accepts all timed executions that are consistent with the timing constraints of the TCMSG. We prove that these extended
event clock automata can be determinized and complemented (as in the case of ordinary event clock automata [7]), yielding
an algorithmic solution to our model checking problem.

Turning to the coverage problem, we observe this cannot be directly reduced to a timed inclusion problem. The timed
inclusion problem in this direction would ask if there is a witnessing execution of the timed MPA for every timed lineariza-
tion of a TCMSC generated by the TCMSG. But an implementation (timed MPA) having strictly better time bounds than the
specification might have a witnessing execution for every TCMSC generated by the TCMSG, even if it does not satisfy every
timed linearization of the TCMSC. Such an implementation should be considered as a valid one and this is precisely what
our definition of the coverage problem achieves. For solving this problem, we need an additional assumption on the speci-
fication. We assume that the locally synchronized TCMSG has a special form that every process on the TCMSC labeling any
node has some event. Now, we use the same extended event clock automaton as above accepting all timed executions that
are consistent with the TCMSG. Then, using a product construction, we can recover the set of paths of the TCMSG which
have some valid execution in the timed MPA, thus solving the coverage problem.

Related work. We have used TCMSGs as the basic model for specifying high level distributed and timed systems. However,
there are other formalisms which also tackle time and concurrency issues in systems. In Petri nets [30] tokens are positioned
in places and a transition fires by consuming tokens and creates new ones, in general in other places. Thus, transitions that
consume different tokens, can fire independently. Many timed extensions of Petri nets have been considered, for instance,
time Petri nets [12], timed Petri nets [29]. Unfoldings of Petri nets provide a way to model the partial order behavior of
these systems and by lifting these unfoldings to the timed extensions, they provide a timed partial order semantics [17]. For
more discussion on this refer to [16]. However, these unfoldings are seldom graphically representable in a compact manner
unlike MSCs (and their timed extensions). Further, unfoldings in Petri nets correspond to “branching time” whereas MSCs
express “linear time” behavior.

Other models dealing with time and concurrency include networks of timed automata [6] and products of timed au-
tomata [20]. Again in [13], unfolding techniques were applied to study such networks of timed automata. However, these
models do not allow communication via explicit message passing which is one of the main features of the timed MPA and
TCMSGs that we have introduced.

The formal semantics and analysis of timing in MSCs has been addressed earlier in [8,10,15,24]. In [8] and [10], only
single timed MSCs or high-level timed MSCs were considered, while in [24] one of the first models of timed MPAs was
introduced. However, the latter do not consider MSCs as a semantics of their automata but rather look at restricted channel
architectures (e.g., one-channel systems) to transfer decidability of reachability problems from the untimed to the timed
setting. The automaton model in [15] links the two approaches by considering a similar automaton model with semantics
in terms of timed MSCs. But they tackle only a specific matching problem for which they propose a practical solution using
the tool UprpPAAL. More recently, in [4]| the authors have considered TCMSGs under restrictions that are weaker than being
locally-synchronized. Though this allows modeling more general non-regular languages of TCMSCs, they only tackle the
emptiness problem and do not address more complicated issues of consistency or conformance as we do.

In [19], the authors develop a specification theory that combines notions of specifications and implementations and
provides constructs for checking consistency etc., in the setting of sequential real-timed systems. However, they define the
implementation as another specification and relate the two using a notion of refinement defined as an alternating (timed)
simulation relation. In our setting, the implementation and specification are different objects to begin with and we relate
them at the level of behaviors rather than systems. Thus, checking consistency corresponds to checking inclusion of timed
behaviors which is often a harder problem than defining a simulation. In addition, we consider timed and distributed
systems, where concurrency plays a major role and gives rise to several additional challenges.

Preliminary versions of some of the results were presented as extended abstracts in [3,5]. Here, we establish a generic
framework that combines those results as well as completes and generalizes the proofs and techniques.

Structure of the paper. The paper is organized as follows. We begin with some preliminaries where we introduce (timed)
MSCs, MSGs and the timed automata formalisms. In the subsequent section, we discuss the conformance problem in detail.
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