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Using denotational semantics tools, Colson and others studied primitive recursive (p.r.) 
algorithms, proving the “ultimate obstinacy” property, which has as a consequence that 
many computations cannot be efficiently implemented in a language that faithfully 
expresses the classical definition of p.r. functions.
As shown by Ritchie and Meyer, the class of p.r. functions can also be characterised by 
the programming language Loop. Our purpose is to show that the informal, but precise, 
operational description of Loop (and its variants) is sufficient to prove non-trivial time 
lower bounds of p.r. algorithms. In particular, we present a simple proof of a property 
which is similar to ultimate obstinacy, namely that every p.r. program that implements a 
non-trivial function must execute xi + c times the body of some loop instruction, where xi

is the initial contents of some fixed input register, and c does not depend on the input 
values. This and other lower bounds were obtained without using the lambda calculus or 
systems with functional parameters (such as Gödel system T).
If the conditional break and the decrement instructions are included in the Loop language, 
the ultimate obstinacy property does not hold. In this case, we use another approach for 
obtaining lower bounds. The unconditional break instruction does not avoid the obstinacy 
property; it is equivalent (in function and efficiency) to the conditional instruction
if-then-else. The efficient implementation of other functions like step(x) (step(0) = 0; 
step(x) = 1 for x ≥ 1) and min(x, y) is also studied.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The class of primitive recursive (p.r.) functions is usually defined [10,17] by a set of initial functions (the constant, 
successor, and projection functions) and two rules – composition and primitive recursion. It can also be characterised as the 
set of functions that can be implemented in a simple register programming language called Loop, see for instance [13].

Given a mathematical model or a programming language that characterises a class of functions such as p.r., we distin-
guish two aspects.2

1. Expressiveness: the capability of defining or programming the functions in the class (and no more).
2. Efficiency: the capability of defining or programming efficient algorithms for the functions in the class.

E-mail address: armandobcm@yahoo.com.
1 Artificial Intelligence and Computer Science Laboratory (www.liacc.up.pt).
2 Which correspond to what some authors call respectively the extensional and the intentional expressiveness.
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1.1. Extending the language Loop or the “classical” definition of p.r. functions

It often happens that many “formalisms”, “models of computation”, or programming languages, while being equally 
expressive (in the sense explained above), are not equivalent in terms of efficiency. Thus, in order to increase the efficiency, 
it may be needed to include additional instructions or to modify the recursive rules – without changing the expressiveness 
of the definition. Citing [16]

. . . as a practical and [. . .] foundational matter, we need to consider “recursive schemes” more general than primitive 
recursion, even if, ultimately, we are only interested in primitive recursive functions.

These “more general recursive schemes” correspond, in the Loop language, to new program constructs. The examples of 
the Loop extensions studied in this paper are:

– The unconditional “break” instruction (which immediately breaks a loop) that allows the implementation in constant 
time of the conditional if-then-else instruction. In fact, the two instructions, as well as the if-then instruction 
are “efficiently equivalent”.

– With the conditional “break if zero” instruction (which breaks a loop if the contents of a register is 0) plus the 
“decrement” instruction, it is possible to implement the min(x, y) function in time O(min(x, y)), thus avoiding a 
manifestation of the obstinacy problem, see for instance [3,4,16]. The “break if zero” and the “break if not 
zero” instructions are equivalent in terms of efficiency. They are also both related to the step(x) function (see definition 
in page 67).

The Loop language and its extensions will be referred as “Loop languages”.

1.2. Purpose of the paper

The main question this paper addresses is whether the lower bounds for the complexity of p.r. algorithms, such as those 
mentioned in [3,4,16,18], can be directly obtained. By “directly” we mean using only an informal, but precise, description of 
the Loop languages, and without using the lambda calculus or systems with functional parameters (such as Gödel system T). 
The answer is yes. Using this “direct approach”, we prove, for instance, the “obstinacy-like” results of the seminal work [3].

1.3. Look ahead

The reader may find it interesting to look at

– Fig. 2, page 80.
– Fig. 3, page 80.

where he can find a summary of the results of this paper.

1.4. Related work

Several authors, see for instance [3,4,16,15,18], studied the efficiency of primitive recursive definitions, using the lambda 
calculus to express the denotational semantic of programming languages, and adaptations of Gödel’s system T to describe 
specific variants of the Loop language.

The lambda calculus has been used by [6] to express the operational semantics of Loop. Corollary 13 of [6] (a conse-
quence of Theorem 12) corresponds to Theorems 1 (page 73) and to Corollary 2 (page 76); see also Sections 5.3.1 and 5.3.2.

Modifications of the basic recursion schema and several extensions of the Loop language have also been studied. For 
instance (i) the instruction “dec x” is often considered as part of the Loop language, see for example Andary et al. [1], 
Michel and Valarcher [15]; (ii) the conditional construct is studied by several authors, see for instance [18]; (iii) first class 
procedures and function pointers, “the imperative counterpart of Gödel system T”, are considered in [7,18]; (iv) the “exit” 
instruction is used in [1]; (v) a conditional form of “exit” and a conditional loop instruction3 are used in [15].

1.5. Paper organisation

The paper is organised as follows. Section 2 (page 67) contains the background needed for the rest of the paper. The 
“Loop languages” are described in Section 3 (page 67). Several lower bounds associated with the algorithms implemented in 
those languages are proved in Section 4 (page 72). The implementation of several programming constructs and of algorithms 

3 In terms of the current paper this instruction is similar to the for loop together the breakZ instruction.



Download English Version:

https://daneshyari.com/en/article/6876026

Download Persian Version:

https://daneshyari.com/article/6876026

Daneshyari.com

https://daneshyari.com/en/article/6876026
https://daneshyari.com/article/6876026
https://daneshyari.com

