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Bisimulations are equivalence relations between transition systems which assure that 
certain aspects of the behaviour of the systems are the same in a related pair. For many 
applications it is not possible to maintain such an equivalence unless non-observable 
(stuttering) behaviour is ignored. However, existing bisimulation relations which permit 
the removal of non-observable behaviour are unable to preserve temporal logic formulas 
referring to the next step operator. In this paper we propose a family of next-preserving 
branching bisimulations to overcome this limitation.
Next-preserving branching bisimulations are parameterised with a natural number,
indicating the nesting depth of the X operators that the bisimulation preserves, while 
still allowing non-observable behaviour to be reduced. Based on van Glabbeek and 
Weijland’s notion of branching bisimulation with explicit divergence, we define the novel 
parameterised relation for which we prove the preservation of CTL∗ formulas with an X
operator-nesting depth that is not greater than the specified parameter. It can be shown 
that the family of next-preserving bisimulations constitutes a hierarchy that fills the gap 
between branching bisimulation and strong bisimulation.
As an example for its application we show how this definition gives rise to an advanced 
slicing procedure that creates a formula-specific slice, which constitutes a reduced model 
of the system that can be used as a substitute when verifying this formula. The result 
is a novel procedure for generating slices that are next-preserving branching bisimilar to 
the original model for any formula. We can assure that each slice preserves the formula it 
corresponds to, which renders the overall verification process sound.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A bisimulation relation defines an equivalence between two transition systems. Two models are bisimilar if their observ-
able behaviours are indistinguishable and thus satisfy the same properties. A variety of bisimulation relations have been 
defined in the literature and they vary in what is considered observable and what is not. The meaning of “observable” 
is relative to the type of bisimulation relation. For example, strong bisimulation [1,2] considers all steps to be observable 
whereas weak forms of bisimulation relations regard silent or stuttering steps (i.e., steps that do not change the state of the 
model) as non-observable.
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Strong bisimulation is known to preserve all temporal properties specified in the logic CTL∗ , the super-set of the linear 
and branching time temporal logics, LTL and CTL (see [3]). However, the properties that are preserved through weak forms 
of bisimulation are only those temporal properties which do not contain the temporal next-step operator X (we refer to 
these as CTL∗−X formulas). This is due to the fact that stuttering steps can affect the validity of formulas that contain the 
next-step operator. Hence, it seems that the preservation of full CTL∗ requires strong bisimulation. On the other hand, using 
strong bisimulation is not always suitable, since some applications rely on the fact that stuttering steps can be neglected. An 
example of this is slicing [4], a technique in which a program or model is reduced by eliminating parts which are irrelevant 
according to a given criterion. The sliced model and the original are related only through weak forms of bisimulation, since 
the irrelevant (or stuttering) steps do not exist in the slice. Our aim is to find a compromise with a new bisimulation that 
is strong enough to preserve all CTL∗ formulas but at the same time weak enough to allow for some reduction, namely of 
those stuttering steps that have no effect (on the validity of a given formula). This judgement is obviously measured with 
respect to a particular formula and, as a consequence, leads to a new parameterised bisimulation relation.

In this paper we define a novel form of bisimulation, referred to as the family of next-preserving branching bisimulations, 
which is based on van Glabbeek and Weijland’s branching bisimulation [5]. The relations contained in this family are pa-
rameterised with a natural number which indicates the number of stuttering steps that are preserved at critical points in 
the system. This number indicates which formulas are preserved by the bisimulation. It can be shown that any formula 
with a nesting depth of X operators smaller than or equal to the specified parameter is preserved in the parameterised 
next-preserving bisimilar system: we give a proof that next-preserving branching bisimulation of depth xd preserves any 
CTL∗ formula with an X-nesting depth of xd or less. The next-preserving bisimulations are stronger than weak forms of 
bisimulation and weaker than strong bisimulation. In fact, they can be ordered into a hierarchy of bisimulations enclosed 
by branching bisimulation (at the weak end of the spectrum) and strong bisimulation (at the strong end). These results are 
useful in any application that aims for a reduction of the model, such as slicing (e.g., [4,6]) or partial order reduction [7].

In our context, the driving force behind the definition of the next-preserving branching bisimulation was the intention 
of improving the slicing algorithm used for temporal logic verification, namely model checking [8,9]. The aim of slicing is 
to reduce (prior to model checking) a large model to a bisimilar slice which can be model checked instead of the original 
model, to combat the state explosion problem inherent to model checking. Based on our past experience in the domain 
of safety analysis (e.g., [10–12]), we found that there are many cases in which the temporal logic formula of interest 
includes the next-step operator, and hence these formulas must be preserved by the slice. In the second part of this paper 
we introduce the resulting new slicing approach for the Behavior Tree modelling notation, which is a graphical formal 
notation aiming to support the user in capturing informal requirements [13,14]. Once a model has been derived from the 
requirements, it can be analysed using a model checker. To guarantee soundness of the approach we need to ensure that 
the same temporal logic formulas are satisfied in the slice as in the original model. As a vehicle to prove the soundness 
of our slicing approach, the notion of next-preserving branching bisimulation with respect to a particular formula is used, 
which guarantees the preservation of this formula (even if it contains the next-step operator). Our approach for deriving a 
next-preserving slicing algorithm for Behavior Trees, we believe, can also be used to derive similar slicing algorithms for 
other notations.

The remainder of this paper is organised as follows. Section 2 provides the necessary background and motivation. Firstly, 
preliminary concepts used throughout the paper are introduced, such as doubly labelled transition systems (Section 2.1), 
CTL∗ (Section 2.2) and branching bisimulation (Section 2.3). This is followed by some preliminary discussion on the preser-
vation of the next operator, including motivating examples (Section 2.4). Section 3 constitutes the core of our work, where 
we define our notion of a family of next-preserving branching bisimulations. The definition is followed by some properties of 
this family in Section 3.1. Utilising these properties, Section 3.2 delivers a proof of the preservation of CTL∗ . Section 3.3
proposes a specialisation for next-preserving bisimulations where parameterisation is extended so that a next-preserving 
bisimulation becomes specific for a particular formula. Section 3.4 presents the family of next-preserving bisimulations as a 
hierarchy that fills the gap between strong bisimulation and branching bisimulation.

In the second half of the paper, these results are then applied in the context of slicing for Behavior Trees. In Section 4
we provide the definitions on which basic slicing of Behavior Trees is built. This summarises the results from [15] and gives 
the background. In Section 5 we demonstrate how the definition of the family of next-preserving branching bisimulations 
gives rise to a new sophisticated slicing procedure which generates a next-preserving bisimilar slice for a specific formula. 
Finally, Section 6 relates our work to other results in the literature and we conclude in Section 7.

2. Bisimulation and the next operator

This section gives a brief introduction to doubly-labelled transition systems, the temporal logic CTL∗ and existing bisim-
ulation relations, followed by a discussion on the next operator, providing the motivation for defining next-preserving 
branching bisimulations.

2.1. Doubly-labelled transition systems

Bisimulations are equivalence relations, normally defined either between labelled transition systems, which have labels 
on transitions, or Kripke structures, which have labels on states. For our purposes, we have chosen to use doubly-labelled 
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