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Program equivalence in linear contexts, where programs are used or executed exactly 
once, is an important issue in programming languages. However, existing techniques like 
those based on bisimulations and logical relations only target at contextual equivalence 
in the usual (non-linear) functional languages, and fail in capturing non-trivial equivalent 
programs in linear contexts, particularly when non-determinism is present.
We propose the notion of linear contextual equivalence to formally characterize such 
program equivalence, as well as a novel and general approach to studying it in higher-
order languages, based on labeled transition systems specifically designed for functional 
languages. We show that linear contextual equivalence indeed coincides with trace 
equivalence. We illustrate our technique in both deterministic (a linear version of PCF) 
and non-deterministic (linear PCF in Moggi’s framework) functional languages.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Contextual equivalence is an important concept in programming languages and can be used to formalize and reason 
about many interesting properties of computing systems. For functional languages, there are many techniques that can help 
to prove contextual equivalence. Among others, applicative bisimulations [1,17] and logical relations [29,32] are particularly 
successful.

On the other side, linear logic (and its term correspondence often known as linear λ-calculus) has seen significant 
applications in computer science ever since its birth, due to its native mechanism of describing restricted use of resources. 
For example, the linear λ-calculus provides the core of a functional programming language with an expressive type system, 
in which statements like “this resource will be used exactly once” can be formally expressed and checked. Such properties 
become useful when introducing imperative concepts into functional programming [15], structural complexity theory [16], 
or analyzing memory allocation [34]. Moreover, the linear λ-calculus, when equipped with dependent types, can serve as a 
representation language within a logical framework, a general meta-language for the formalization of deductive systems [7]. 
The study of linearity in concurrent languages such as the π -calculus allows for a fine-grained analysis of process behavior 
[20,36,4].

Introducing linearity also leads to novel observation over program equivalences. In particular, if we consider a special sort 
of contexts where candidate programs must be used linearly (we call these contexts linear contexts), program equivalence 
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with respect to these contexts should be a coarser relation than the usual notion of contextual equivalence, especially when 
non-determinism is present. For instance, take Moggi’s language for non-determinism [23], where we have a primitive � 
for non-deterministic choice (same as the internal choice in CSP [14]), and consider the following two functions:

f1
def= val(λx .val(0) � val(1))

f2
def= val(λx .val(0)) � val(λx .val(1)).

(1)

Existing techniques such as bisimulation or logical relations distinguish these two functions. In fact, it is easy to show that 
they are not equivalent in arbitrary contexts, by considering, e.g., the context

bind f = [_] in bind x = f (0) in bind y = f (0) in val(x = y).

The context makes a double evaluation of the function by applying it to concrete arguments (noticing that Moggi’s lan-
guage enforces a call-by-value evaluation of non-deterministic computations): with the first function f1 , the two evaluations 
of f (0) can return different values since the non-deterministic choice is inside the function body; with the second func-
tion f2, the non-deterministic choice is made before both evaluations of f (0) and computation inside the function is 
deterministic, so the two evaluations always return the same value. But if we consider only linear contexts, where pro-
grams will be evaluated exactly once, then the two functions must be equivalent. However, no existing technique, at least to 
the best of our knowledge, can characterize such an equivalence relation with respect to linear contexts.

1.1. Potential application in computational cryptography

The motivation of the work first comes from the second author’s work on building a logic (namely CSLR) for reasoning 
about computational indistinguishability, which is an essential concept in complexity-theoretic cryptography and helps to 
define many important security criteria [24,37,10]. The CSLR logic is based on a functional language which characterizes 
probabilistic polynomial-time computations by typing, where linearity plays an important role.

Let us consider an example. The semantic security is a fundamental property of encryption schemes and in CSLR we can 
define it as

λη .λm0 . λm1 .Enc(η,m0, pk) �C λη .λm0 . λm1 .Enc(η,m1, pk) (2)

where Enc is the (probabilistic) encryption function, pk is a public key known to adversaries, and η is the security pa-
rameter. The equivalence relation �C is what we call computationally indistinguishability in cryptography and the detailed 
definition can be found in [37, Definition 1]. Intuitively, it says that no feasible adversary can distinguish the related 
programs with non-negligible probabilities (w.r.t. the programs’ security parameter). Formula (2) formally states the in-
distinguishability between two encryption oracles: an adversary can only do encryption (with the key pk) by calling the 
oracles, who will ask the adversary to supply a pair of messages at his/her choice and return the encryption of one of them 
— the left oracle always returns the cipher-text of the first message and the right one returns the cipher-text of the second. 
Computational indistinguishability between the two oracles says that no feasible adversary, when calling one of the two 
oracle, can answer which message is encrypted with a significant winning probability.

Computational indistinguishability is indeed a notion of observational equivalence, where adversaries must be com-
putable in polynomial-time on probabilistic Turing machines. Complexity is well manipulated in the CSLR type system, 
where linearity particularly plays the essential role of controlling complexity in higher-order functions. The original def-
inition indicates that the two oracles as defined in (2) can be called only for a polynomial number of times, however, 
Theorem 5.2.11 in [11] shows that the definition where an adversary only submits a single pair of messages to the oracle, is 
equivalent to the multi-messages version. It suggests that we can effectively replace the computational indistinguishability 
by the notion of linear contextual equivalence in (2) and consider an adversary who calls the oracle only once.

In fact, we believe that linear contextual equivalence can be used to define security criteria with non-adaptive adversaries. 
Non-adaptive adversaries send multiple messages to oracles but choose messages independently of the oracles’ responses, 
so we can actually define the oracles as functions receiving a list of messages. Adversaries will also send their messages to 
the oracle all at once and in that case they call the oracle only once.

Although the language of the CSLR logic is probabilistic, a general proof technique of linear contextual equivalence is 
missing from the literature, particularly in a non-deterministic setting where there exist programs that are equivalent in 
linear contexts but not in general, as we described previously.

1.2. Related work

Program equivalence with respect to non-linear contexts has been widely investigated. Logical relations are one of the 
powerful tools for proving contextual equivalence in typed lambda-calculi, in both operational [26,27,6] and denotational 
settings [29,22,13]. They are defined by induction on types, hence are relatively easy to use. But it is known that complete-
ness of (strict) logical relations are often hard to achieve, especially for higher-order types. It is even worse for monadic 
types, particularly when non-determinism is present [21].
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