
Theoretical Computer Science 585 (2015) 91–114

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A multi-domain incremental analysis engine and its 

application to incremental resource analysis ✩

Elvira Albert a,∗, Jesús Correas a, Germán Puebla b, Guillermo Román-Díez b

a DSIC, Complutense University of Madrid (UCM), Spain
b DLSIIS, Technical University of Madrid (UPM), Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 6 March 2015

Keywords:
Static analysis
Resource usage analysis
Cost analysis
Incremental analysis

The aim of incremental analysis is, given a program, its analysis results, and a series of 
changes to the program, to obtain the new analysis results as efficiently as possible and, 
ideally, without having to (re-)analyze fragments of code which are not affected by the 
changes. Incremental analysis can significantly reduce both the time and the memory 
requirements of analysis. The first contribution of this article is a multi-domain incremental 
fixed-point algorithm for a sequential Java-like language. The algorithm is multi-domain 
in the sense that it interleaves the (re-)analysis for multiple domains by taking into 
account dependencies among them. Importantly, this allows the incremental analyzer to 
invalidate only those analysis results previously inferred by certain dependent domains. The 
second contribution is an incremental resource usage analysis which, in its first phase, uses 
the multi-domain incremental fixed-point algorithm to carry out all global pre-analyses 
required to infer cost in an interleaved way. Such resource analysis is parametric on the 
cost metrics one wants to measure (e.g., number of executed instructions, number of 
objects created, etc.). Besides, we present a novel form of cost summaries which allows us to 
incrementally reconstruct only those components of cost functions affected by the changes. 
Experimental results in the costa system show that the proposed incremental analysis 
provides significant performance gains, ranging from a speedup of 1.48 up to 5.13 times 
faster than non-incremental analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Static cost analysis [39] (a.k.a. resource usage analysis) aims at automatically inferring the resource consumption of 
executing a program as a function of its input data sizes, i.e., without actually executing the program. In this work, we 
rely on a generic notion of resource, which can be instantiated to measure the amount of memory allocated, number of 
instructions executed, number of calls to methods, etc. Intuitively, the main steps in order to infer the cost of programs 
written in an object-oriented (OO) language are:

1. OO pre-analyses. Almost for every property being analyzed, it is required to perform a class (or application extraction) 
analysis [34] which determines the set of reachable classes which must be considered by subsequent global analyses. 

✩ This work is an extended and revised version of PEPM’12 [5].

* Corresponding author.
E-mail addresses: elvira@sip.ucm.es (E. Albert), jcorreas@fdi.ucm.es (J. Correas), german@fi.upm.es (G. Puebla), groman@fi.upm.es (G. Román-Díez).

http://dx.doi.org/10.1016/j.tcs.2015.03.002
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:elvira@sip.ucm.es
mailto:jcorreas@fdi.ucm.es
mailto:german@fi.upm.es
mailto:groman@fi.upm.es
http://dx.doi.org/10.1016/j.tcs.2015.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.03.002&domain=pdf


92 E. Albert et al. / Theoretical Computer Science 585 (2015) 91–114

Besides, analyzers of OO languages often perform non-nullness analysis [22,33] which allows removing unsatisfiable 
nullness checks.

2. Cost relations. Given the program and the pre-analyses information, this step consists in setting up cost recurrence equa-
tions, or cost relations for short (CRs), which define the cost of executing the program in terms of the input data sizes. 
The global analysis underlying this step is the inference of size relations which determine how the sizes of data change 
along program’s execution [3]. In the presence of heap-allocated data structures, size analysis based on path-length [35]
relies on a series of pre-analyses, namely, sharing, acyclicity and constancy.

3. Cost functions. In the last step, cost relation solvers [2] try to obtain cost functions which are not in recursive form and 
hence are directly evaluable. Since exact solutions seldom exist, analyzers infer upper/lower bounds for the CRs. This 
is again a global process which starts by solving the CRs which do not depend on any other one and continues by 
replacing the computed cost functions on the equations which call such relations until all CRs are solved.

Hence, cost analysis is performed by a sequence of global analyses, i.e., which require to analyze the whole program in 
order to obtain sound and precise results. Despite the great progress made in static analysis, most global analyzers still 
read and analyze the entire program at once in a non-incremental way. In particular, current state of the art resource 
analyses are non-incremental [3,18,21]. Incremental analysis has applications in the following two scenarios: (1) Software 
development. During software development, programs are often modified, e.g., because a new implementation of an existing 
method is provided (which improves its efficiency or fixes its correctness) or because an existing code is extended with 
new functionality (typically by extending a class with further methods). In such cases, the existing analysis information 
for the program may no longer be correct and/or accurate. (2) SPLE. One increasing trend in software engineering is to 
develop multiple, similar software products instead of just a single individual program. Software Product Line Engineering 
(SPLE) [10] offers a solution which is based on the explicit modeling of what is common and what differs between product 
variants, and on building a reuse infrastructure (product line asset) that can be instantiated and possibly extended to build 
the desired similar products. Building a product consists in incrementally assembling the product from the product line 
assets by applying the selected features.

Resource analysis is a compute-intensive task and, in scenarios as those mentioned above, starting analysis from scratch 
(instead of reusing previous results) is inefficient in most cases. Consider a given program, its analysis results and a series 
of changes to the program, e.g., extensions to build a new product in the SPLE scenario or modifications to fix a bug in 
the software development scenario. Incremental resource usage analysis aims at obtaining the new analysis results more 
efficiently, without having to (re-)analyze fragments of code which are not affected by the changes.

1.1. Summary of contributions

In this article, we present a generic incremental multi-domain analysis engine for an imperative object-oriented pro-
gramming language, and study its application in the context of incremental resource usage analysis. The main challenge 
when devising an incremental analysis framework is to recompute the least possible information and do it in the most 
efficient way. Our main contributions can be summarized as follows:

• We introduce a multi-domain incremental analysis engine which interleaves the computation for multiple analysis do-
mains. Dealing with a large number of pre-analyses, and threading the information about change through all of them is 
the main challenge we face here. Our algorithm takes into account the dependencies among them in such a way that it 
is possible to invalidate only part of the pre-computed dependent information.

• We describe how the previous algorithm can be used in order to incrementally compute all global pre-analyses required 
to infer the resource usage of a program (including class analysis, nullness, sharing, cyclicity, constancy and size analyses 
mentioned above). All such analysis information is included in the so-called cost method summary and used by the 
multi-domain incremental analysis engine.

• Even a small change within a method (e.g., adding an instruction) can change the overall cost of the program. Our 
contribution, in order to minimize the amount of information that needs to be recomputed, is on the notion of upper 
bound summary which allows us to distinguish the cost subcomponents associated to each method, so that the final cost 
functions can be recomputed by replacing only the affected subcomponents.

• The correctness of our approach has been proved within the article. In addition, complete details of some proofs can be 
found in Appendix A.

• We have implemented the incremental analysis in the costa system, a cost and termination analyzer for Java byte-
code programs. Experimental results are performed on selected benchmarks from the standardized JOlden benchmark 
suite [36] and from the Apache Commons Project [28]. Our results show that the proposed incremental analysis achieves 
a significant speedup with respect to the non-incremental approach.

To the best of our knowledge, this is the first approach to the incremental inference of resource usage bounds.



Download	English	Version:

https://daneshyari.com/en/article/6876049

Download	Persian	Version:

https://daneshyari.com/article/6876049

Daneshyari.com

https://daneshyari.com/en/article/6876049
https://daneshyari.com/article/6876049
https://daneshyari.com/

