
Theoretical Computer Science 577 (2015) 74–97

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Unveiling metamorphism by abstract interpretation of code 

properties

Mila Dalla Preda a,∗, Roberto Giacobazzi a, Saumya Debray b

a University of Verona, Italy
b University of Arizona, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 November 2012
Received in revised form 10 May 2014
Accepted 17 February 2015
Available online 23 February 2015
Communicated by V. Sassone

Keywords:
Abstract interpretation
Program semantics
Metamorphic malware detection
Self-modifying programs

Metamorphic code includes self-modifying semantics-preserving transformations to exploit 
code diversification. The impact of metamorphism is growing in security and code 
protection technologies, both for preventing malicious host attacks, e.g., in software 
diversification for IP and integrity protection, and in malicious software attacks, e.g., in 
metamorphic malware self-modifying their own code in order to foil detection systems 
based on signature matching. In this paper we consider the problem of automatically 
extracting metamorphic signatures from metamorphic code. We introduce a semantics for 
self-modifying code, later called phase semantics, and prove its correctness by showing that 
it is an abstract interpretation of the standard trace semantics. Phase semantics precisely 
models the metamorphic code behavior by providing a set of traces of programs which 
correspond to the possible evolutions of the metamorphic code during execution. We show 
that metamorphic signatures can be automatically extracted by abstract interpretation of 
the phase semantics. In particular, we introduce the notion of regular metamorphism, 
where the invariants of the phase semantics can be modeled as finite state automata 
representing the code structure of all possible metamorphic change of a metamorphic 
code, and we provide a static signature extraction algorithm for metamorphic code where 
metamorphic signatures are approximated in regular metamorphism.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Detecting and neutralizing computer malware, such as worms, viruses, trojans, and spyware is a major challenge in 
modern computer security, involving both sophisticated intrusion detection strategies and advanced code manipulation 
tools and methods. Traditional misuse malware detectors (also known as signature-based detectors) are typically syntactic 
in nature: they use pattern matching to compare the byte sequence comprising the body of the malware against a signature 
database [34]. Malware writers have responded by using a variety of techniques in order to avoid detection: Encryption, 
oligomorphism with mutational decryption patterns, and polymorphism with different encryption methods for generat-
ing an endless sequence of decryption patterns are typical strategies for achieving malware diversification. Metamorphism 
emerged in the last decade as an effective alternative strategy to foil misuse malware detectors. Metamorphic malware 
apply semantics-preserving transformations to modify its own code so that one instance of the malware bears very little 
resemblance to another instance, in a kind of body-polymorphism [33], even though semantically their functionality is the 

* Corresponding author.
E-mail addresses: mila.dallapreda@univr.it (M. Dalla Preda), roberto.giacobazzi@univr.it (R. Giacobazzi), debray@cs.arizona.edu (S. Debray).

http://dx.doi.org/10.1016/j.tcs.2015.02.024
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.02.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:mila.dallapreda@univr.it
mailto:roberto.giacobazzi@univr.it
mailto:debray@cs.arizona.edu
http://dx.doi.org/10.1016/j.tcs.2015.02.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.02.024&domain=pdf


M. Dalla Preda et al. / Theoretical Computer Science 577 (2015) 74–97 75

same. Thus, a metamorphic malware is a malware equipped with a metamorphic engine that takes the malware, or parts of 
it, as input and morphs it at run-time to a syntactically different but semantically equivalent variant, in order to avoid de-
tection. Some of the basic metamorphic transformations commonly used by malware are semantic-nop/junk insertion, code 
permutation, register swap and substitution of equivalent sequences of instructions [7,33]. It is worth noting that most of 
these transformations can be seen as special cases of code substitution [23]. The quantity of metamorphic variants possible 
for a particular piece of malware makes it impractical to maintain a signature set that is large enough to cover most or 
all of these variants, making standard signature-based detection ineffective [10]. Existing malware detectors therefore fall 
back on a variety of heuristic techniques, but these may be prone to false positives (where innocuous files are mistakenly 
identified as malware) or false negatives (where malware escape detection) at worst. The reason for this vulnerability to 
metamorphism lies upon the purely syntactic nature of most existing and commercial detectors. The key for identifying 
metamorphic malware lies, instead, in a deeper understanding of their semantics. Preliminary works in this direction by 
Dalla Preda et al. [16], Christodorescu et al. [11], and Kinder et al. [27] confirm the potential benefits of a semantics-based 
approach to malware detection. Still a major drawback of existing semantics-based methods relies upon their need of an 
a priori knowledge of the obfuscations used to implement the metamorphic engine. Because of this, it is always possible 
for any expert malware writer to develop alternative metamorphic strategies, even by simple modification of existing ones, 
able to foil any given detection scheme. Indeed, handling metamorphism represents one of the main challenges in modern 
malware analysis and detection [18].

Contributions We use the term metamorphic signature to refer to an abstract program representation that ideally captures 
all the possible code variants that might be generated during the execution of a metamorphic program. A metamorphic 
signature is therefore any (possibly decidable) approximation of the properties of code evolution. We propose a different 
approach to metamorphic malware detection based on the idea that extracting metamorphic signatures is approximating mal-
ware semantics. Program semantics concerns here the way code changes, i.e., the effect of instructions that modify other 
instructions. We face the problem of determining how code mutates, by catching properties of this mutation, without any a 
priori knowledge about the implementation of the metamorphic transformations. We use a formal semantics to model the 
execution behavior of self-modifying code commonly encountered in malware. Using this as the basis, we propose a theo-
retical model for statically deriving, by abstract interpretation, an abstract specification of all possible code variants that can 
be generated during the execution of a metamorphic malware. Traditional static analysis techniques are not adequate for 
this purpose, as they typically assume that programs do not change during execution. We therefore define a more general 
semantics-based behavioral model, called phase semantics, that can cope with changes to the program code at run time. The 
idea is to partition each possible execution trace of a metamorphic program into phases, each collecting the computations 
performed by a particular code variant. The sequence of phases (once disassembled) represents the sequence of possible 
code mutations, while the sequence of states within a given phase represents the behavior of a particular code variant.

Phase semantics precisely expresses all the possible phases, namely code variants, that can be generated during the 
execution of a metamorphic code. Phase semantics can then be used as a metamorphic signature for checking whether 
a program is a metamorphic variant of another one. Indeed, thanks to the precision of phase semantics, we have that a 
program Q is a metamorphic variant of a program P if and only if Q appears in the phase semantics of P . Unfortunately, 
due to the possible infinite sequences of code variants that can be present in the phase semantics of P , the above test 
for metamorphism is undecidable in general. Thus, in order to gain decidability, we need to loose precision and do so by 
using the well established theory of abstract interpretation [12,13]. Indeed, abstract interpretation is used here to extract 
the invariant properties of phases, which are properties of the generated program variants. Abstract domains represent here 
properties of the code shape in phases. We use the domain of finite state automata (FSA) for approximating phases and 
provide a static semantics of traces of FSA as an abstraction of the phase semantics. We introduce the notion of regular 
metamorphism as a further approximation obtained by abstracting sequences of FSA into a single FSA. This abstraction 
provides an upper regular language-based approximation of any metamorphic behavior of a program and it leads to a 
decidable test for metamorphism. This is particularly suitable to extract metamorphic signatures for engines implemented 
themselves as FSA of basic code transformations, which correspond to the way most classical metamorphic generators are 
implemented [23,31,35]. Our approach is general and language independent, providing an adequate theoretical foundation 
for the systematic design of algorithms and methods devoted to the extraction of approximate metamorphic signatures 
from any metamorphic code P . The main advantage of the phase semantics here is in modeling code mutations without 
isolating the metamorphic engine from the rest of the viral code. The approximation of the phase semantics by abstract 
interpretation can make decidable whether a given binary matches a metamorphic signature, without knowing any features 
of the metamorphic engine itself.

Structure of the paper In Section 3 we describe the behavior of a metamorphic program as a graph, later called program 
evolution graph, where each vertex is a standard static representation of programs (e.g., a control flow graph) and whose 
edges represent possible run-time changes to the code. We then define the phase semantics of a program as the set of 
all possible paths in the program evolution graph and we prove its correctness by showing that it is a sound abstract 
interpretation of standard trace semantics. Thus, phase semantics provides a precise description of the history of run-time 
code modifications, namely the sequences of “code snapshots” that can be generated during execution. Then, in Section 4, we 
introduce a general method for extracting metamorphic signatures as abstract interpretation of phase semantics. The result 



Download	English	Version:

https://daneshyari.com/en/article/6876059

Download	Persian	Version:

https://daneshyari.com/article/6876059

Daneshyari.com

https://daneshyari.com/en/article/6876059
https://daneshyari.com/article/6876059
https://daneshyari.com/

