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For the issue of translations between programming languages with observational semantics, 
this paper clarifies the notions, the relevant questions, and the methods; it constructs a 
general framework, and provides several tools for proving various correctness properties of 
translations like adequacy and full abstractness, with a special emphasis on observational 
correctness. We will demonstrate that a wide range of programming languages and 
programming calculi and their translations can make advantageous use of our framework 
for focusing the analysis of their correctness.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Motivated by our experience in analyzing and proving properties of translations between programming languages with 
observational semantics, this paper clarifies the notions, the relevant questions, and the methods, and also constructs a gen-
eral framework, and provides several tools for proving various correctness properties of translations like adequacy and 
full abstractness. The presented framework can directly be applied to the observational equivalences derived from the 
operational semantics of programming calculi (also with concurrency), to the relationship between specification and im-
plementation, to the issue of correctness of embedding a language into another, and also to further issues in translations, 
and thus has a wide range of applications.

In order to be as general as possible, we use the term observation in this paper for any predicate on programs, without
any further restriction like being a constructive one or an effectively computable property.

Motivation Translating programs is an important operation in several fields of computer science. There are four main tasks 
where translations play an important role:

(1) Translation is the standard task of a compiler, where this is usually a conversion from a high-level language into an 
intermediate or low-level one, like an abstract machine language or an assembly-like language. Correctness of such a 
translation ensures correctness of the compiler.
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(2) Translations are required in programming languages for explaining the meaning of surface language constructs by 
decomposing them into a number of more primitive operations in the core part of the programming language. The 
translation paradigm is also useful for reasoning about the implementations of language extensions in terms of a core 
language (which are often packaged into the language’s library). Typical examples are implementations of channels, 
buffers, or semaphores using a synchronizing primitive in the core part of the language, for example using mutable 
reference cells and futures in Alice ML [7,39,65], or using MVars in Concurrent Haskell [41]. Correctness of these im-
plementations can be proved by interpreting the implementation as a translation from the extended language into the 
original language and then showing correctness of the translation.

(3) Optimization of programs by transforming them into programs of the same language, like inlining, partial evaluation and 
dead code removal are a special case of translations, where source and target language are the same. Again correctness 
of the program transformations can be seen correctness of translations.

(4) Translations are used to compare the expressiveness (and obtain corresponding expressiveness results) between differ-
ent languages or programming models. Examples are showing adequacy or full abstractness of denotational models (e.g. 
[45,31,9,2]), where the translation computes the denotation of the program, proving a language extension being conser-
vative, or even showing non-expressiveness by proving the non-existence of “correct” translations (one such example is 
the non-encodability of the synchronous π -calculus in its asynchronous variant under mild restrictions [40]). A further 
example is the question for the expressive power of a sublanguage, viewed as embedded, and whether the language 
can be seen as a conservative extension of the sublanguage. An example scenario is removing syntactic sugar.

Correctness of these translations is an indispensable prerequisite for their safe use. However, there are various different 
views of the strength of correctness of a translation. This pluralism appears to be necessary and driven by practical needs, 
since the desired strength of correctness of a translation may depend on the specific setting.

From a bird’s eye view a programming language is a set of programs P equipped with a notion of equivalence ∼ of 
programs (the semantics). A translation T maps programs from a source language K into a target language K′ . This suffices 
to define the commonly used notions of adequacy and full abstractness: The translation T is adequate iff for all (closed) 
programs p1, p2 ∈ K the implication T (p1) ∼K′ T (p2) �⇒ p1 ∼K p2 holds; this can also be seen as the “no confusion” 
property, since it is equivalent to p1 �K p2 �⇒ T (p1) �K′ T (p2). If additionally p1 ∼K p2 �⇒ T (p1) ∼K′ T (p2) holds then 
T is fully abstract. Requiring fully abstract translations is often a too hard condition, while adequacy is a necessity. Without 
adequacy, in the target language equivalent programs may be interchanged correctly (since they are equivalent), but from the 
source level view, the semantics is changed. From a compilation point of view, full abstractness ensures that optimizations 
of programs can be performed only in K or only in K′ without missing opportunities. If a compilation is adequate, but not 
fully abstract (which is unavoidable in a majority of cases), then optimizing in K′ and K is permitted, but optimizing only 
in K′ may miss certain optimizations, since after compilation, some intentional knowledge may be lost.

Depending on the definitions of ∼K and ∼K′ , adequacy and even full abstractness may be too weak as a correctness 
notion. E.g., none of the properties ensures that programs before and after the translation have the same termination 
behavior, which is an inevitable requirement to conclude that T together with K′ is a correct evaluator for K. Thus we will 
be more concrete, and provide a general approach for program calculi with an operational semantics, which beside others 
covers the termination behavior of programs.

Results and applications We give a short and informal overview of the results and applications. Within the scope are (at 
least) programming languages where programs can be written down (using a syntax) and evaluated (using an operational se-
mantics) and of several observations like successful evaluation in a program context (may-convergence, must-convergence). 
Syntactically, typing can be formulated and open and closed programs can be distinguished, and operationally, also concur-
rent systems, e.g. process calculi are in the scope.

A first useful result (where variants are already in the literature) is Theorem 3.16 which shows that there are eas-
ily checkable criteria for adequacy, namely compositionality and convergence equivalence. In this paper there are further 
extensions and variations of this method.

A general result concerning translations is Theorem 3.21 which exhibits conditions, when the translated programs are 
more or less equivalent to the original programs (in the image calculus); which is a theorem similar to an algebraic homo-
morphism theorem. It also provides a first result on conditions when a translation is an embedding.

Section 4 exhibits several conditions and scenarios for extending (resp. embedding) languages. Theorem 4.3 puts a com-
mon technique in semantics (approximation by ⊥) for showing full abstraction into the context of our framework, where 
the approximations are represented as a family of translations.

Theorem 4.6 is a criterion for full abstractness under a minimal set of conditions. It complements the full abstractness 
criteria of Theorem 3.21. Corollaries 4.7 and 4.8 show that there are easy-to-check preconditions for applying Theorem 4.6.

Applications of the framework and the methods are in Section 5.2 and in Section 5.3. In particular Corollary 4.8 was 
applied in [38]. Another published result is the proof of conservativity of embedding the deterministic part of the language 
in the full language [54].

This paper presents a unifying approach for different variations of observational semantics and translations of program-
ming languages. The usage may be as turnkey solution for proving properties of translations, and if this is not applicable, 
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