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We extend the well known bottleneck paths problem in two directions for directed graphs 
with unit edge costs and positive real edge capacities. Firstly we narrow the problem 
domain and compute the bottleneck of the entire network in O (m logn) time, where m
and n are the number of edges and vertices in the graph, respectively. Secondly we enlarge 
the domain and compute the shortest paths for all possible bottleneck amounts. We call 
this problem the Shortest Paths for All Flows (SP-AF) problem. We present a combinatorial 
algorithm to solve the Single Source SP-AF problem in O (mn) worst case time, followed 
by an algorithm to solve the All Pairs SP-AF problem in O (

√
tn(ω+9)/4) time, where t is 

the number of distinct edge capacities and O (nω) is the time taken to multiply two n-by-n
matrices over a ring.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let us start by considering a graph where each edge has a capacity. Then the bottleneck of a path is the minimum 
capacity out of all edge capacities on the path. In other words, the bottleneck is the maximum flow that can be pushed 
through the path. The Bottleneck Path (BP) from a vertex u to vertex v is the path that gives us the maximum bottleneck 
value out of all possible paths from u to v . The problem of finding the bottleneck paths from a single source vertex to all 
other vertices in the graph is known as the Single Source Bottleneck Paths (SSBP) problem, and the problem of finding the 
bottleneck paths for all possible pairs of vertices is known as the All Pairs Bottleneck Paths (APBP) problem [1–3]. The BP 
problems have important applications in various fields such as transportation and logistics, computer networking, etc.

We define the bottleneck of the entire graph as the minimum bottleneck from all bottleneck paths for all possible pairs 
of vertices. We refer to the problem of finding the bottleneck of the entire graph as the Graph Bottleneck (GB) problem. The 
GB can be considered to be the bottleneck of the entire graph, and highlights the edge that may experience the greatest 
amount of pressure when the given network is under heavy load. Also, edges with capacities that are smaller than the GB 
can be considered to be redundant, and solving the GB problem can highlight these edges.

It is straightforward to solve the GB problem by first solving the APBP problem then scanning the results for the mini-
mum bottleneck value. We show that the GB problem can be solved efficiently without having to solve the APBP problem. 
Our algorithm has the asymptotic worst case time complexity of O (m log n), where m is the number of edges and n is the 
number of vertices on the graph.

Let us now consider a graph where each edge has a cost in addition to the capacity. Then there exists a shortest path 
from vertex u to vertex v that can satisfy a flow of amount up to f . If the flow demand from u to v is less than f , 
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however, there may exist a shorter path from u to v . This information is useful if we wish to minimize the distance for a 
given amount of flow. Thus our new problem is to compute the shortest paths for each possible flow value. We call this 
problem the Shortest Paths for All Flows (SP-AF) problem.

One motivation for solving the SP-AF problem is its application in computer networking. If we model a computer network 
as a graph such that each router/host is represented as a vertex and each link is represented as an edge, (i, j), then the 
bandwidth and latency of the link can be considered to be the capacity and the cost of the edge, respectively. If the required 
data flow from a source host to a destination host can be predetermined, then it is clearly beneficial to find the path with 
the lowest total latency that has enough bandwidth for the required flow amount, such that the data can be transferred as 
quickly as possible without causing any network congestion.

As is common in graph paths problems, we divide the SP-AF problem into the Single Source SP-AF (SSSP-AF) problem 
and the All Pairs SP-AF (APSP-AF) problem. Note that the APSP-AF problem is different from the All Pairs Bottleneck Shortest 
Paths (APBSP) problem [3], which is to compute the bottlenecks of the shortest paths for all pairs. We present a combi-
natorial algorithm for solving the SSSP-AF problem in O (mn) time, and we present an algebraic algorithm for solving the 
APSP-AF problem in O (

√
tn(ω+9)/4) time, where t is the number of distinct edge capacities and O (nω) is the time taken 

to multiply two n-by-n matrices over a ring. The current best algorithm for the matrix multiplication over a ring gives 
ω < 2.373 [4].

Our algorithms are presented in the order of increasing complexity. Section 3 details the algorithm for solving the GB 
problem. In Sections 4.1 and 4.2 we present the algorithms for solving the SSSP-AF and APSP-AF problems, respectively.

2. Preliminaries

Let G = (V , E) be a directed graph with unit edge costs and real positive edge capacities where V is the set of vertices 
(or nodes) and E is the set of edges. Let n = |V | and m = |E|. Vertices are given by integers such that {1, 2, ..., n} ∈ V . Let 
(i, j) ∈ E denote the edge from vertex i to vertex j. Let c(i, j) denote the capacity of the edge (i, j). Let t be the number 
of distinct edge capacity values. We define the path length as the number of edges on the path and the path distance (or 
cost) as the sum of all edge costs on the path. For graphs with unit edge costs, the path length and the path distance are 
equivalent.

Let R = {ri j} be the Boolean reachability matrix, where ri j = 1 if (i, j) ∈ E and 0 otherwise. rii = 1 for all 1 ≤ i ≤ n. Let 
D = {dij} be the distance matrix. Since we are only considering graphs with unit edge costs, dij = 1 if (i, j) ∈ E and ∞
otherwise. dii = 0 for all 1 ≤ i ≤ n. Let B = {bij} be the bottleneck matrix, where bij = c(i, j) if (i, j) ∈ E and 0 otherwise. 
bii = ∞ for all 1 ≤ i ≤ n.

We now define three types of matrix multiplication, namely the Boolean-product denoted by •, the (min, +)-product 
denoted by �, and the (max, min)-product denoted by ∗:

R • R =
n∨

k=1

{rik ∧ rkj} D � D = n
min
k=1

{dik + dkj} B ∗ B = n
max
k=1

{
min {bik,bkj}

}

We can observe that r2
i j = 1 if j is reachable from i via any path of length up to two, d2

i j is the shortest distance possible 
from i to j via any path of length up to two, and finally b2

i j is the maximum bottleneck possible from i to j via any path of 
length up to two. Clearly Rn−1 is the reflexive-transitive closure, Dn−1 is the solution to the well known All Pairs Shortest 
Paths (APSP) problem, and Bn−1 is the solution to the APBP problem.

3. The graph bottleneck problem

Suppose that the APBP problem has already been solved. Then we define the GB, denoted as Θ , as the minimum bottle-
neck value from all bottleneck paths. Clearly the most straightforward method of computing Θ is to solve the APBP problem 
then scanning the results in O (n2) time to find the minimum. The APBP problem can be solved in O (mn + n2 log n) time by 
a simple modification to the well known Dijkstra’s algorithm [5]. On dense graphs where m = O (n2), a sub-cubic algorithm 
is known for solving the APBP in O (n2.688) time bound [1].

Example 1. Θ = 9 for the graph in Fig. 1, which is the capacity of edges (2, 5) and (7, 8).

If we define Θ to be 0 for graphs that are not strongly connected, it is possible to solve the GB problem much faster than 
the straightforward method described above. We begin by assuming that the edge capacities are integers bounded by c. Let 
the threshold value h be initialized to c/2. Let G ′ = (V , E ′) be such that E ′ only contains edges from E that have capacities 
greater than or equal to h. We repeatedly halve the possible range [α, β] for Θ by adjusting the threshold h through binary 
search, as shown in Algorithm 1.

Theorem 1. The GB problem can be solved in O (m logn) worst case time complexity.
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