Some results on point visibility graphs

Subir Kumar Ghosh, Bodhayan Roy*
School of Technology \& Computer Science, Tata Institute of Fundamental Research, Mumbai 400005, India

ARTICLE INFO

Article history:

Received 7 April 2014
Received in revised form 25 September 2014
Accepted 28 October 2014
Available online 31 October 2014

Keywords:

Necessary conditions
Recognizing point visibility graphs
Characterizing point visibility graphs
Visibility embedding
Planar graph
Computational geometry
PSPACE

Abstract

In this paper, we present three necessary conditions for recognizing point visibility graphs. We show that this recognition problem lies in PSPACE. We state new properties of point visibility graphs along with some known properties that are important in understanding point visibility graphs. For planar point visibility graphs, we present a complete characterization which leads to a linear time recognition and reconstruction algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The visibility graph is a fundamental structure studied in the field of computational geometry and geometric graph theory [5,9]. Some of the early applications of visibility graphs included computing Euclidean shortest paths in the presence of obstacles [14] and decomposing two-dimensional shapes into clusters [18]. Here, we consider problems from visibility graph theory.

Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a set of points in the plane (see Fig. 1). We say that two points p_{i} and p_{j} of P are mutually visible if the line segment $p_{i} p_{j}$ does not contain or pass through any other point of P. In other words, p_{i} and p_{j} are visible if $P \cap p_{i} p_{j}=\left\{p_{i}, p_{j}\right\}$. If two vertices are not visible, they are called an invisible pair. For example, in Fig. 1 (c), p_{1} and p_{5} form a visible pair whereas p_{1} and p_{3} form an invisible pair. If a point $p_{k} \in P$ lies on the segment $p_{i} p_{j}$ connecting two points p_{i} and p_{j} in P, we say that p_{k} blocks the visibility between p_{i} and p_{j}, and p_{k} is called a blocker in P. For example in Fig. 1(c), p_{5} blocks the visibility between p_{1} and p_{3} as p_{5} lies on the segment $p_{1} p_{3}$. The visibility graph (also called the point visibility graph (PVG)) G of P is defined by associating a vertex v_{i} with each point p_{i} of P such that $\left(v_{i}, v_{j}\right)$ is an undirected edge of G if and only if p_{i} and p_{j} are mutually visible (see Fig. 1(a)). Observe that if no three points of P are collinear, then G is a complete graph as each pair of points in P is visible since there is no blocker in P. Sometimes the visibility graph is drawn directly on the point set, as shown in Figs. 1(b) and 1(c), which is referred to as a visibility embedding of G.

[^0]

Fig. 1. (a) A point visibility graph with $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ as a CSP. (b) A visibility embedding of the point visibility graph where (p_{1}, p_{2}, p_{3}, p_{4}) is a GSP. (c) A visibility embedding of the point visibility graph where $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is not a GSP.

Fig. 2. (a) A planar graph G. (b) A planar visibility embedding of G.

Fig. 3. (a) A planar graph G. (b) A planar embedding of G. (c) A non-planar visibility embedding of G.

Given a point set P, the visibility graph G of P can be computed as follows. For each point p_{i} of P, the points of P are sorted in angular order around p_{i}. If two points p_{j} and p_{k} are consecutive in the sorted order, check whether p_{i}, p_{j} and p_{k} are collinear points. By traversing the sorted order, all points of P, that are not visible from p_{i}, can be identified in $O(n \log n)$ time. Hence, G can be computed from P in $O\left(n^{2} \log n\right)$ time. Using the result of Chazelle et al. [4] or Edelsbrunner et al. [7], the time complexity of the algorithm can be improved to $O\left(n^{2}\right)$ by computing sorted angular orders for all points together in $O\left(n^{2}\right)$ time.

Consider the opposite problem of determining if there is a set of points P whose visibility graph is the given graph G. This problem is called the visibility graph recognition problem: Given a graph G in adjacency matrix form, determine whether G is the visibility graph of a set of points P in the plane [10]. Identifying the set of properties satisfied by all visibility graphs is called the visibility graph characterization problem. The problem of actually drawing one such set of points P whose visibility graph is the given graph G, is called the visibility graph reconstruction problem.

In Section 2.1, we present three necessary conditions for the recognition problem. Though the first necessary condition can be tested in $O\left(n^{3}\right)$ time, it is not clear whether the second necessary and third conditions can be tested in polynomial time. In Section 2.2, we present a linear time algorithm for identifying a Hamiltonian Cycle of a point visibility graph from a given visibility embedding. In Section 2.3 , we establish a property on the connectivity of point visibility graphs.

We address some complexity aspects of point visibility graphs. In Section 3.1, we show that the recognition problem lies in PSPACE. In Section 3.2, we show that the problems of Vertex Cover, Independent Set and Maximum Clique remain NP-hard on point visibility graphs.

If a given graph G is planar, there can be three cases: (i) G has a planar visibility embedding (Fig. 2), (ii) G admits a visibility embedding, but no visibility embedding of G is planar (Fig. 3), and (iii) G does not have any visibility embedding (Fig. 4). Case (i) has been characterized by Eppstein [6] by presenting four infinite families of G and one particular graph. In order to characterize graphs in Case (i) and Case (ii), we show that two infinite families and five particular graphs are required in addition to graphs for Case (i). Using this characterization, we present an $O(n)$ algorithm for recognizing and

https://daneshyari.com/en/article/6876072

Download Persian Version:
https://daneshyari.com/article/6876072

Daneshyari.com

[^0]: ${ }^{\hat{u}}$ An extended abstract of this paper appeared in the Proceedings of the Eighth International Workshop on Algorithms and Computation, pp. 163-175, 2014 [11].

 * Corresponding author.

 E-mail addresses: ghosh@tifr.res.in (S.K. Ghosh), bodhayan@tifr.res.in (B. Roy).

