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A spanning tree of an unweighted graph is a minimum average stretch spanning tree if it 
minimizes the ratio of sum of the distances in the tree between the end vertices of the 
graph edges and the number of graph edges. For a polygonal 2-tree on n vertices, we 
present an algorithm to compute a minimum average stretch spanning tree in O (n logn)

time. This algorithm also finds a minimum fundamental cycle basis in polygonal 2-trees. 
We show that there is a unique minimum cycle basis in a polygonal 2-tree and it can be 
computed in linear time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Average stretch is a parameter used to measure the quality of a spanning tree in terms of distance preservation, and 
finding a spanning tree with minimum average stretch is a classical problem in network design. Let G = (V (G), E(G)) be an 
unweighted graph and T be a spanning tree of G . For an edge (u, v) ∈ E(G), dT (u, v) denotes the distance between u and 
v in T . The average stretch of T is defined as

AvgStr(T ) = 1

|E(G)|
∑

(u,v)∈E(G)

dT (u, v) (1)

A minimum average stretch spanning tree of G is a spanning tree that minimizes the average stretch. Given an unweighted 
graph G , the minimum average stretch spanning tree (Mast) problem is to find a minimum average stretch spanning tree 
of G . Due to the unified notation for tree spanners, the Mast problem is equivalent to the problem, Mfcb, of finding a 
minimum fundamental cycle basis in unweighted graphs [17]. Minimum average stretch spanning trees are used to solve 
symmetric diagonally dominant linear systems [17]. Further, minimum fundamental cycle bases have various applications 
including determining the isomorphism of graphs, frequency analysis of computer programs, and generation of minimal 
perfect hash functions (see [4,11] and the references therein]). Due to these vast applications, finding a minimum average 
stretch spanning tree is useful in theory and practice. The Mast problem was studied in a graph theoretic game in the 
context of the k-server problem by Alon et al. [1]. The Mfcb problem was introduced by Hubika and Syslo in 1975 [12]. 
The Mfcb problem was proved to be NP-hard by Deo et al. [4] and APX-hard by Galbiati et al. [11]. Another closely related 
problem is the problem of probabilistically embedding a graph into its spanning trees. A graph G is said to be probabilistically 
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embedded into its spanning trees with distortion t , if there is a probability distribution D of spanning trees of G , such that 
for any two vertices the expected stretch of the spanning trees in D is at most t . The problem of probabilistically embedding 
a graph into its spanning trees with low distortion has interesting connections with low average stretch spanning trees.

In the literature, spanning trees with low average stretch have received significant attention in special graph classes such 
as k-outerplanar graphs and series-parallel graphs. In case of planar graphs, Kavitha et al. remarked that the complexity 
of Mfcb is unknown and there is no O (log n) approximation algorithm [13]. For k-outerplanar graphs, the technique of 
peeling-an-onion decomposition is employed to obtain a spanning tree whose average stretch is at most ck , where c is a 
constant [7]. In case of series-parallel graphs, a spanning tree with average stretch at most O (log n) can be obtained in 
polynomial time (see Section 5 in [8]). The bounds on the size of a minimum fundamental cycle basis are studied in graph 
classes such as planar, outerplanar and grid graphs [13]. The study of probabilistic embeddings of graphs is discussed in 
[7,8]. To the best of our knowledge, there is no published work to compute a minimum average stretch spanning tree and 
minimum fundamental cycle basis in any subclass of planar graphs.

We consider polygonal 2-trees in this work, which are also referred to as polygonal-trees. They have a rich structure that 
make them very natural models for biochemical compounds, and provide an appealing framework for solving associated 
enumeration problems.

Definition 1. (See [14].) A cycle is a polygonal 2-tree. For a polygonal 2-tree G such that (u, v) ∈ E(G), adding a path P
between u and v in such a way that E(G) ∩ E(P ) = ∅, V (G) ∩ V (P ) = {u, v}, and |E(P )| ≥ 2 results in a polygonal 2-tree.

A cycle consisting of k edges is a k-gonal tree. For a k-gonal 2-tree G such that (u, v) ∈ E(G), adding a path P between 
u and v in such a way that E(G) ∩ E(P ) = ∅, V (G) ∩ V (P ) = {u, v}, and |E(P )| = k − 1 results in a k-gonal 2-tree. For 
example, a 2-tree is a 3-gonal tree. The class of polygonal 2-trees is a subclass of planar graphs and it includes 2-connected 
outerplanar graphs and k-gonal trees. 2-trees, in other words 3-gonal trees, are extensively studied in the literature. In 
particular, previous work on various flavors of counting and enumeration problems on 2-trees is compiled in [10]. Formulas 
for the number of labeled and unlabeled k-gonal trees with r polygons (induced cycles) are computed in [15]. The family 
of k-gonal trees with same number of vertices is claimed as a chromatic equivalence class by Chao and Li, and the claim 
has been proved by Wakelin and Woodal [14]. The class of polygonal 2-trees is shown to be a chromatic equivalence class 
by Xu [14]. Further, various subclasses of generalized polygonal 2-trees have been considered, and it has been shown that 
they also form a chromatic equivalence class [14,19,20]. The enumeration of outerplanar k-gonal trees is studied by Harary, 
Palmer and Read to solve a variant of the cell growth problem [6]. Molecular expansion of the species of outerplanar k-gonal 
trees is shown in [6]. Also outerplanar k-gonal trees are of interest in combinatorial chemistry, as the structure of chemical 
compounds like catacondensed benzenoid hydrocarbons forms an outerplanar k-gonal tree.

Our results. We state our main theorem.

Theorem 2. Given a polygonal 2-tree G on n vertices, a minimum average stretch spanning tree of G can be obtained in O (n logn)

time.

Due to the equivalence of Mast and Mfcb (shown in Lemma 5), our result implies the following corollary. For a set B of 
cycles in G , the size of B, denoted by size(B), is the number of edges in B counted according to their multiplicity.

Corollary 3. Given a polygonal 2-tree G on n vertices, a minimum fundamental cycle basis B of G can be obtained in O (n logn +
size(B)) time.

We characterize polygonal 2-trees using a kind of ear decomposition and present the structural properties of polygonal 
2-trees that are useful in finding a minimum average stretch spanning tree (in Section 3). We then identify a set of edges in 
a polygonal 2-tree, called safe edges, whose removal results in a minimum average stretch spanning tree (in Section 4). We 
present an algorithm with necessary data-structures to identify the safe set of edges efficiently and compute a minimum 
average stretch spanning tree in sub-quadratic time (in Section 5). We finally characterize polygonal 2-trees using cycle 
bases, which is of our independent interest (in Section 6).

A graph G can be probabilistically embedded into its spanning trees with distortion t if and only if the multigraph 
obtained from G by replicating its edges has a spanning tree with average stretch at most t (see [1]). It is easy to observe 
that, a spanning tree T of G is a minimum average stretch spanning tree for G if and only if T is a minimum average stretch 
spanning tree for a multigraph of G . As a consequence of our result, we have the following corollary.

Corollary 4. For a polygonal 2-tree G on n vertices, the minimum possible distortion of probabilistically embedding G into its spanning 
trees can be obtained in O (n logn) time.
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