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We study the central objects of symbolic dynamics, that is, subshifts and block maps, 
from the perspective of basic category theory, and present several natural categories with 
subshifts as objects and block maps as morphisms. Our main goals are to find universal 
objects in these symbolic categories, to classify their block maps based on their category 
theoretic properties, to prove category theoretic characterizations for notions arising from 
symbolic dynamics, and to establish as many natural properties (finite completeness, 
regularity etc.) as possible. Existing definitions in category theory suggest interesting new 
problems in symbolic dynamics. Our main technical contributions are the solution to the 
dual problem of the Extension Lemma and results on certain types of conserved quantities, 
suggested by the concept of a coequalizer.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Like many branches of mathematics, symbolic dynamics is the study of a category: the category with subshifts as objects 
and block maps as morphisms. Of particular interest is the case where the objects are SFTs or sofic shifts, and we will 
mostly concentrate on such subcategories. Like in many branches of mathematics, the first question that comes to mind 
is still open: ‘When are two objects isomorphic?’, and a lot of mathematics has been developed trying to answer this 
question [1]. Questions such as ‘When is an object a subobject of another?’ (the embedding problem) and ‘When does an 
object map onto another?’ (the factoring problem) have been solved at least in important special cases (see Factor Theorem 
and Embedding Theorem in [2], and the article [3]).

A nice feature of category theory is that it allows one to define notions such as ‘isomorphism’, ‘embedding’ and ‘factoring’ 
without referring to anything except morphisms between objects. For example, two objects X and Y are isomorphic, in the 
sense of category theory, if there exist morphisms f : X → Y and g : Y → X such that g ◦ f = idX and f ◦ g = idY . Usually, 
this turns out to be the ‘correct’ notion for isomorphism. For embedding (and factoring), the situation is more complicated: 
often the most natural definition of an embedding is that it is injective. The notion of injectivity (and surjectivity) is, 
however, impossible to define categorically, since a category does not know what its morphisms actually are: they need not 
even be functions! Because of this, multiple categorical variants of injectivity have been defined, including monicness, split 
monicness and regular monicness. These are generalizations of the various ways in which an injective map should behave 
in relation to other morphisms. In sufficiently nice categories (for example, the category of sets), these all correspond to 
injectivity, but in many categories, they state some other property, and often raise new natural questions.
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Because categorical notions depend on all morphisms of the category, we define several categories (thirteen, to be exact) 
whose objects are subshifts and morphisms are block maps between them. We begin our study in Section 4 by considering 
the various categorical definitions of injectivity and surjectivity for our categories. We see that these categories are not 
nearly as ‘nice’ as that of sets, in that usually these notions do not characterize injectivity or surjectivity in our categories. 
Interestingly, the characterization of split monicness comes from the well-known Extension Lemma. The dual concept of 
split epicness turns out interesting as well, and we find a characterization in the SFT case. Our discussion of morphisms is 
motivated as the study of how well standard notions of category theory describe the world of block maps, and in Section 5, 
we ask a kind of converse question of whether category theory can describe standard notions of symbolic dynamics. Here, 
we mostly concentrate on the properties of objects.

In Section 6, we move on to important category theoretical closure properties: the existence of (finite) limits and colimits 
of diagrams. The importance of these notions is that many category theoretical definitions are just limits of diagrams of 
certain types. The case of coequalizers turns out to be the most intricate, and we present an undecidability result related 
to it. In Section 7, we discuss the existence of images, disjoint unions and quotients in a categorical sense, that is, whether 
our categories are regular, coherent and exact, respectively.

The topics of cellular automata (particular kinds of block maps) and category theory have been previously explicitly 
discussed together at least in [4], but the approach there is very different. There, cellular automata are constructed using 
category theoretical tools, and properties that ‘come for free’ from category theoretical generalities are investigated.

2. Definitions and notation

In this section, we establish the basic terminology and notation used in this article. As we are working in the intersection 
of two quite distinct fields, symbolic dynamics and category theory, we try to be as complete as possible.

2.1. Symbolic dynamics

For a finite set S (an alphabet) with the discrete topology, we denote by SZ the space of two-way infinite configurations
(or points) over S with the product topology, and call it the full shift on S . The shift action σ : SZ → SZ is defined by 
σ(x)i = xi+1 for all i ∈ Z. A fixed point of σ is called a uniform point. A closed subset X of a full shift with σ(X) = X is 
called a subshift. We say that a word w ∈ S∗ occurs in x ∈ SZ if x[i,i+|w|−1] = w for some i ∈ Z, and also write w � x. An 
alternative characterization of subshifts is by means of forbidden words: X ⊂ S Z is a subshift if and only if there exists a 
set of words F ⊂ S∗ such that X = {x | ∀w ∈ F : w �� x}. If the set of forbidden words can be taken to be finite, X is called 
a subshift of finite type, or SFT for short, and if the set is a regular language, X is called sofic. If X is an SFT and Y is any 
subshift, then X ∩ Y is a subSFT of Y . If the SFT (or subSFT of Y ) X can be defined by forbidden words of length at most m
(in addition to the forbidden words of Y ), we say m is a window size of X (relative to Y ). We denote by σX the restriction 
of σ to X .

The words of length n appearing in configurations of X are denoted Bn(X), and we denote the language of X by B(X) =⋃
n∈NBn(X). Since a subshift is defined by its language [2], we may also denote X = B−1(L), if L ⊂ S∗ is an extendable 

language (for every v ∈ L there exist u, w ∈ S+ with uv w ∈ L) such that B(X) is the language of subwords of words in L. 
Usually, when using this notation, we write a regular expression in place of L. An SFT X ⊂ SZ can also be defined by giving 
a set of allowed words A ⊂ Sn for some n ∈ N such that X = {x ∈ SZ | ∀i : x[i,i+n−1] ∈ A}.

Example 1. The sofic shift B−1(0∗10∗) consists of exactly those configurations of {0, 1}Z that contain at most one 1. The sub-
shift B−1((0∗10)∗) is an SFT, and can be defined by the single forbidden word 11. For a fixed p ∈ N, the SFT B−1((0p−11)∗)
contains exactly p points with spatial period p, and we use it as a ‘canonical’ p-periodic subshift. As a dynamical system, it 
is isomorphic to (Zp, n 
→ n + 1 mod p), the set of integers modulo p with incrementation.

For two subshifts X ⊂ SZ and Y ⊂ RZ , define X × Y ⊂ (S × R)Z as the coordinatewise product

{
z ∈ (S × R)Z | . . . p1(z−1)p1(z0)p1(z1) . . . ∈ X ∧ . . . p2(z−1)p2(z0)p2(z1) . . . ∈ Y

}
,

where p1 and p2 are the appropriate projections from S × R . Define also X ∪̇ Y as their symbol-disjoint union, where we 
replace S and R with disjoint sets if necessary.

The syntactic monoid Syn(X) of a subshift X ⊂ SZ is defined as S∗/∼X , where u ∼X v denotes that wuw ′ ∈ B(X) if 
and only if w v w ′ ∈ B(X) for all w, w ′ ∈ S∗ . We also denote (v)X = v/∼X . It is known that sofic shifts are exactly those 
subshifts whose syntactic monoid is finite.

A block map is a continuous function f : X → Y from a subshift to another with f ◦ σX = σY ◦ f . Block maps are defined 
by local functions F : B2r+1(X) → B1(Y ) by f (x)i = F (x[i−r,i+r]), where r ≥ 0 is called a radius of f . If f is surjective, Y is 
a factor of X , and if it is bijective, X and Y are conjugate. The block map itself is called an embedding, a factor map or a 
conjugacy, if it is injective, surjective or bijective, respectively. We say f is preinjective if f (x) �= f (y) whenever x �= y ∈ X
are asymptotic, that is, they differ in finitely many coordinates. If X = Y , then f is called a cellular automaton on X .
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