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Traditional black-box optimization searches a set of potential solutions for those optimizing 
the value of a function whose analytical or algebraic form is unknown or inexistent, 
but whose value can be queried for any input. Co-optimization is a generalization of 
this setting, in which fully evaluating a potential solution may require querying some 
function more than once, typically a very large number of times. When that’s the case, co-
optimization poses unique difficulties to designing and assessing algorithms. A generally-
applicable approach is to judge co-optimization algorithm performance via an aggregate 
over all possible functions in the problem domain. We establish formal definitions of such 
aggregate performance and then investigate the following questions concerning algorithm 
design: 1) are some algorithms strictly better than others? i.e. is there “free lunch”? 2) do 
optimal algorithms exist? and 3) if so, are they practical? We formally define free lunch 
and aggregate optimality of co-optimization algorithms and derive generic conditions for 
their existence. We review and explain prior (no) free lunch results from the perspective of 
these conditions; we also show how this framework can be used to bridge several fields of 
research, by allowing formalization of their various problems and views on performance. 
We then apply and extend the generic results in a context involving a particular type of 
co-optimization called worst-case optimization. In this context we show that there exist 
algorithms that are aggregately-optimal for any budget (allowed number of function calls) 
and any starting point (set of previously uncovered function call outcomes), and also non-
trivially strictly optimal for many budgets and starting points; moreover, we formalize 
the operation of such optimal algorithms and show that for certain domains, budgets 
and starting points this operation is equivalent to a simple procedure with tractable 
implementation—a first-of-its-kind result for co-optimization.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

In traditional optimization the goal is to find in a set of potential solutions the ones that optimize the value of a function; 
we say optimization is “black-box” if the function’s analytical or algebraic form is unknown or inexistent, but the function’s 
value can be queried for any input. Thus, determining whether one potential solution is better than another with respect to 
this goal involves only one function call per potential solution.
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In co-optimization (also called generalized optimization [1]), the criterion specifying whether one potential solution is 
better than another, typically called a solution concept [2], may require a very large, possibly infinite number of function 
calls. For instance, this may be the case if potential solutions perform differently under different circumstances, and in prac-
tice it is often computationally prohibitive or even impossible to evaluate all function calls corresponding to even a single 
potential solution and every possible circumstance. As a result, an algorithm attempting to tackle such a co-optimization 
problem can only access incomplete information when choosing: a) which function calls to make—the exploration mecha-
nism; and b) which potential solution looks best so far—the output mechanism. Since judging algorithms is typically based 
in some way on the potential solutions they output, assessing and comparing algorithm performance on a given function 
must also rely on incomplete information (apart from controlled research settings in which the function is a black-box only 
for the algorithm, but in fact analytically known to the researcher).

One way to make reliable performance comparisons under uncertainty is to aggregate over all possibilities for the unseen 
information [1]. Given such a notion of aggregate performance, the following questions are of immediate importance for 
designing high-performance co-optimization algorithms: 1) are some algorithms strictly better than others? 2) do optimal 
algorithms exist? and 3) if so, are they practical?

Most famously, the first question has been answered ‘no’ for certain traditional optimization contexts [3–8], a type of 
result called “no free lunch”. By context we mean a specific combination of: solution concept, way of judging performance 
on a given function, method of aggregating over multiple functions, and any additional assumptions about the problem 
domain or the algorithms.

The first question has also been answered ‘yes’ for certain contexts, both in traditional optimization [8–12] and in 
non-traditional co-optimization [1,13–15]. Many of the latter results [1,13,14] involved worst-case optimization, i.e. the 
solution concept of finding the potential solution with best worst-case performance, which is of interest to game theory 
[16], function approximation [17,18], constraint optimization [17,19], robust discreet optimization [20], various kinds of 
engineering design and optimization [21,22] and scheduling [23–25].

When the answer to the first question is ‘no’, the answer to the second question is trivial: yes, all algorithms are 
aggregately-optimal. But if some algorithms are strictly better than others, meaning there is free lunch, then the sec-
ond question is more interesting. For traditional optimization, it has been studied extensively. For non-traditional co-
optimization, this question has been tackled only partially, via decomposition with respect to the two mechanisms forming 
the algorithm. Specifically, notions of optimal output mechanisms have been introduced for certain contexts [1,14,26,27]. 
However, these definitions were implicitly already based on assumptions of existence and tied to the specific context in 
which they were introduced in a way that didn’t make it obvious which properties of that context guaranteed the existence. 
Additionally, most of these works focused on theoretically specifying what an aggregately-optimal output mechanism would 
have to output. Only in one case involving worst-case optimization has the theoretical definition been shown equivalent to 
a simple, easy-to-implement procedure [27]. To the best of our knowledge, this is to date the only result pertaining to the 
third question and there is no work defining or studying the existence and practicality of aggregately-optimal exploration 
mechanisms or complete algorithms for non-traditional co-optimization.

The goal of this paper is to fill some of these gaps in two-fold fashion: firstly, to establish a co-optimization performance 
framework unifying prior work, exposing open questions and facilitating future studies of additional contexts; secondly, 
to determine, via application of this framework, the existence, nature and tractability of aggregately-optimal algorithms—
including exploration mechanisms—for worst-case optimization.

The rest of this manuscript is organized as follows. The next two sections pursue the first goal. In Section 2 we formalize 
co-optimization domains, problems, solution concepts and algorithms; we define worst-case optimization and show how it 
can be expressed as a co-optimization problem; we also show this for traditional single and multi-objective optimization 
and reinforcement learning, and make parallels to supervised machine learning. In Section 3 we formalize performance, 
free lunch and aggregate optimality and derive existence conditions; we link such notions for complete algorithms to the 
respective notions for the output and exploration mechanisms, and do so taking into account multiple possible budgets 
and starting points; we also exemplify how various views of performance can be instantiated from the framework and we 
explain, via the existence conditions, which context properties enabled prior results. Section 4 is a worst-case optimization 
study pursuing the second goal. Building upon the framework and results in Sections 2 and 3, we show a wide range 
of situations where it is easy to implement a worst-case co-optimization algorithm that is strictly aggregately-optimal for 
many budgets and starting points and this optimality is non-trivial, in that it consists of more than just avoiding duplicate 
function calls and exploiting lucky situations where the true worst-case performance of a potential solution is revealed. 
Section 5 provides discussion and conclusions. All proofs and tables summarizing notation are included in the accompanying 
supplementary materials.

2. Co-optimization framework

2.1. Domains and problems

Let us consider the real-world application described in [22] and summarized as follows. The design of large ships is 
concerned with building ships that are resilient to damages. Both the space of designs and the space of possible damages 
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