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P systems are a class of computational models inspired by the structure and the 
functioning of a living cell. In the semantics of P systems, there exists a global clock, 
which marks the time for the system, and the execution time of each rule takes exactly one 
time unit. However, in living cells, the execution time of different biochemical reactions is 
dependent on many uncontrollable factors, and it is hard to know precisely the specific 
execution time of a reaction. In this work, with this biological inspiration, we consider the 
class of P systems with active membranes that are “robust” against the execution time 
of rules. Specifically, we give a time-free uniform solution to the SAT problem using P 
systems with active membranes, where the constructed P system can solve a family of 
instances with an arbitrarily given size, and the execution time of the involved rules has 
no influence on the correctness of the solution. We also prove that any Turing computable 
set of numbers can be generated by a time-free P system with active membranes in the 
sense that the set of numbers generated by the given P system with active membranes 
does not depend on the execution time of rules.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Membrane computing is a vigorous branch of natural computing introduced by Gh. Păun [13]. The computation models in 
the field of membrane computing are known as P systems, which are parallel and distributed computation models. P systems 
are based upon the membrane structure of living cells and inspired from the cellular-level information processes involving 
different biochemical reactions, which can be viewed as computing processes. Roughly speaking, there are three main classes 
of P systems that have been considered until now: cell-like P systems [13], tissue-like P systems [7], neural-like P systems 
[6]. A recent coverage of membrane computing can be found in [16], and for the most up-to-date information for this 
area, readers can refer to the P systems web site: http :/ /ppage .psystems .eu. The present work focuses on a class of cell-like 
P systems, called P systems with active membranes, introduced in [14].

P systems with active membranes were proved to be Turing universal by using the rules in various strategies, such as 
maximal parallelism, asynchronous, sequential, minimal parallelism [16]. P systems with active membranes were also used 
to solve computationally hard problems efficiently (in polynomial time or in linear time) [1,9–11] in the semantics that there 
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exists a global clock, which marks time units, all regions evolve synchronously, and the execution time of each rule takes 
exactly one time unit. However, living cells can assume neither restrictions on the execution time nor the presence of global 
clocks synchronizing the execution of different parallel processes; moreover, the execution time of certain biological process 
could vary because of external uncontrollable conditions, such as biological signals, catalyst and medium temperature.

With this biological fact, timed P systems were proposed in [2], where an integer that represents the execution time is 
associated with each rule. Time-free P systems are a particular class of timed P systems in the sense that such P systems 
always generate (or accept) an identical family of vectors of natural numbers, independent of the value assigned to the 
execution time of each rule.

Time-free P systems were proved to be universal by simulating non-synchronized P systems [2]. In [12], time-free spiking 
neural P systems (SN P systems, for short) were investigated, where a time mapping of rules is added in general SN P systems 
to identify the execution time of the rules, and by simulating register machines, it was proved that such time-free systems 
can compute any set of Turing computable natural numbers.

Time-free solutions to computational hard problems were formulated as open problems in [5]. In [19], a family of P 
systems with active membranes was designed for a time-free solution to the SAT problem in the sense that the execution 
time of the involved rules has no influence on the correctness of the solution. The P systems designed in [19] were semi-
uniform, that is, there exists a deterministic Turing machine working in polynomial time which constructs the system from 
the instance. It was formulated as open problem how we can give a uniform time-free solution to the SAT problem in the 
sense that P systems are constructed from the size of instances of the problem (that is, a P system can solve a family of 
instances with an arbitrarily given size) [19].

In this work, we present a time-free solution to the SAT problem by a family of P systems with active membranes in a 
uniform way, which answers the corresponding open problem formulated in [19]. We also prove that any Turing computable 
set of numbers can be produced by a time-free P system with active membranes.

2. Preliminaries

2.1. Formal language theory

In this subsection, we only introduce some basic notions and notations from formal language theory. One can refer to 
[18] for more details.

An alphabet Σ is a finite and nonempty set of symbols. An ordered finite sequence of Σ forms a string (or word), which 
is obtained by juxtaposing symbols of Σ . The length of a string u, denoted by |u|, is the number of occurrences of symbols 
it contains. By |u|a we denote the number of occurrences of symbol a in u. The empty string is denoted by λ. The set of all 
strings over an alphabet Σ is denoted by Σ∗ and by Σ+ = Σ∗ \ {λ} we denote the set of all non-empty strings. A subset of 
Σ∗ is called a language over Σ .

We denote by N the set of non-negative integers. A multiset m over a set A is a pair (A, f ) where f : A → N is a 
mapping. If m = (A, f ) is a multiset, then its support is defined as supp(m) = {x ∈ A | f (x) > 0}. A multiset is finite if its 
support is a finite set. If m = (A, f ) is a finite multiset over A, and supp(m) = {a1, . . . , ak}, then it will be denoted as 
m = a f (a1)

1 a f (a2)
2 . . .a f (ak)

k or its permutations.
If m1 = (A, f1), m2 = (A, f2) are multisets over A, then we define the union of m1 and m2 as m1 + m2 = (A, g), where 

g(x) = f1(x) + f2(x).

2.2. Register machines

In the proof given in this work, we will use the characterization of NRE (the family of sets of numbers which are Turing 
computable) by means of register machines (also called counter machines, program machines, etc.).

Definition 1. A register machine is a tuple M = (m, H, l0, lh, I), where:

• m is the number of registers;
• H is a set of labels;
• l0, lh ∈ H are distinguished labels, where l0 is the initial, and lh is the halting one;
• I is a set of labeled program instructions of the following forms:

– li : (ADD(r), l j, lk); add 1 to register r and continue with one of the instructions with labels l j, lk , non-deterministically 
chosen;

– li : (SUB(r), l j, lk); if the contents of register r is greater than zero, subtract 1 from register r and continue with the 
instruction with the label l j , otherwise the instruction with label lk;

– lh : HALT.

A register machine M generates a set N(M) of numbers in the following way: the machine starts with all registers being 
empty (i.e., storing the number zero); the machine applies the instruction with label l0 and continues to apply instructions 
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