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In this paper we study the minimum rainbow subgraph problem, motivated by applications
in bioinformatics. The input of the problem consists of an undirected graph with n vertices
where each edge is colored with one of the p possible colors. The goal is to find a subgraph
of minimum order (i.e. minimum number of vertices) which has precisely one edge from
each color class.
In this paper we show a randomized max(

√
2n,

√
Δ(1+√

lnΔ/2))-approximation algorithm
using LP rounding, where Δ is the maximum degree in the input graph. On the other hand
we prove that there exists a constant c such that the minimum rainbow subgraph problem
does not have a c ln Δ-approximation, unless NP ⊆ DTIME(nO (log log n)).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

An important problem in computational biology is the pure parsimony haplotyping problem (PPH), introduced by Gusfield
in 2003 [9]. The problem input consists of a set G of p genotypes (i.e. vectors with entries in {0,1,2}) corresponding to
individuals in a population. A genotype g is explained by two haplotypes (i.e. vectors with entries in {0,1}) h1 and h2 if for
each entry i, either g[i] = h1[i] = h2[i] or g[i] = 2 and h1[i] �= h2[i]. For example, the genotype g = 012 is explained by the
haplotypes h1 = 010 and h2 = 011 as h1[1] = h2[1] = g[1] = 0, h1[2] = h2[2] = g[2] = 1, h1[3] �= h2[3] and g[3] = 2. The goal
is to find a set of haplotypes of minimum cardinality which explains the set G of genotypes. The positions where g[i] = 2
are named ambiguous positions. If the number of ambiguous positions in each genotype is at most k, then the problem is
termed PPH(k).

Camacho et al. [5] show that the PPH(k) problem for k ≤ O (log p) can be reduced in polynomial time to the minimum
rainbow subgraph (MRS) problem which we describe next. The input consists of an undirected graph G where each edge is
colored with one of the p possible colors. A rainbow subgraph F ⊆ G contains precisely one edge from each color class. The
goal of the problem is to find a rainbow subgraph of G which has a minimum number of vertices.

1.2. Previous work

Pure parsimony haplotyping The pure parsimony haplotyping problem was introduced by Gusfield [9]. Hubbell shows that
the PPH problem is NP-hard [13]. Lancia et al. [16] show that the PPH(k) problem is APX-hard for k ≥ 3 and present a
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2k−1-approximation algorithm. In the same paper [16] they also show a
√

p-approximation for the PPH problem. PPH(k) is
fixed parameter tractable and is solvable in polynomial time for k ≤ 2 [17]. In [12] the PPH problem is called the optimal
haplotype inference. Huang et al. [12] present an approximation algorithm based on semidefinite programming which, with
high probability, stops after O (log p) iterations and is a O (log p)-approximation. The PPH problem is extensively studied in
literature and several heuristics and approaches based on integer programming were proposed (see [6] for a survey).

Minimum rainbow subgraph Rainbow subgraphs are fundamental in combinatorics and have been extensively studied
(e.g. [7,18,1,10,19]). In general, combinatorists study the existence of a rainbow subgraph under various conditions. How-
ever, from the algorithmic perspective, the problem did not receive much attention until recently. Camacho et al. [5] give an
approximation algorithm with a ratio of 5

6 Δ, where Δ is the maximum degree of the input graph. This was later improved

to 1
2 + ( 1

2 + ε)Δ for arbitrarily small ε [4]. Katrenič and Schiermeyer [4] also prove that the MRS problem is APX-hard on
graphs with maximum degree 2 (notice that the APX-hardness of MRS in the general case follows from the APX-hardness
of PPH(k)) and present an exact algorithm with time complexity O (2(p+2p log Δ)nO (1)). Koch et al. [15] show that a natural
greedy algorithm achieves a ratio of Δ

2 + ln Δ+1
2 (if the average degree of the minimum rainbow subgraph is d, then the

greedy algorithm achieves a ratio of d
2 + ln�d�+1

2 ). Notice that the best approximation ratio is still O (n) in the worst case.

Other related problems If we do not consider the coloring of the edges, the MRS problem is known as the k − f (k) dense
subgraph problem introduced by Asahiro et al. [2]. The k − f (k) dense subgraph problem is NP-hard as it is a special case
of the maximum clique problem when f (k) = k(k − 1)/2.

The MRS problem is a special case of the minimum k-colored subgraph problem (MkCSP) introduced by Hajiaghayi et
al. [11]. MkCSP is defined as follows: given an undirected graph G , a color function that assigns to each edge one or more
of p given colors, and an integer k ≤ p, find a minimum set of vertices of G inducing edges of at least k colors. As shown
in [11], this problem has a surprising connection to the k − f (k) dense subgraph problem and it is a generalization of the
PPH problem. An important case of MkCSP occurs when k = p.

1.3. Our results

In this paper we decrease the gap between the approximation lower and upper bounds of the minimum rainbow sub-
graph problem. First, we show a max(

√
2n,

√
Δ(1 + √

ln Δ/2))-approximation algorithm, where n is the number of vertices
in the input graph.

The algorithm is based on randomized linear programming (LP) rounding. The first step of the algorithm is to solve
the LP relaxation of an integer program for the MRS problem. Then, we add each vertex in the solution with a probability
proportional to the corresponding variable of the LP (multiplied by a certain factor). We show that the subgraph constructed
in this way contains “most” of the p colors. Thus, we can apply the following naive algorithm for the remaining colors w:
pick an arbitrary edge colored with w and add both its endvertices in the subgraph.

On the inapproximability side we show that the MRS is hard to approximate within a factor of c ln Δ, for some c > 0,
unless NP ⊆ DTIME(nO (log log n)). The hardness result is obtained via a gap-preserving reduction from the set cover problem.
Given a set cover instance with n elements we create an instance of the MRS problem such that OPTMRS = n(OPTSC + 1),
where OPTMRS and OPTSC are the values of the optimal solutions of the MRS problem and, respectively, the set cover. Feige
shows [8] that it is not possible, assuming NP � DTIME(nO (log log n)), to decide in polynomial time if a set cover instance has
a solution using k sets or the number of sets in the optimal solution is greater than k ln n. Combining Feige’s result with our
reduction, we obtain the claimed hardness result.

The rest of the paper is organized as follows. In Section 2 we give preliminary definitions. In Section 3 we present the
approximation algorithm and in Section 4 we show the hardness result. Section 5 is reserved for conclusions and open
problems.

2. Preliminaries

In this section we introduce notation and give preliminary definitions. We start with the definition of the minimum
rainbow subgraph problem.

Problem 1 (Minimum rainbow subgraph). The input of the problem consists of an undirected graph G = (V , E), and a function
col : E → {1,2, . . . , p}. A rainbow subgraph of G is a graph G ′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E such that for any i ∈ {1,2, . . . , p}
there is exactly one edge e ∈ E ′ with col(e) = i. The goal is to find a rainbow subgraph of minimum order (i.e. |V ′| is minimized).

Example 1. Consider the complete graph on the vertex set V = {a,b, c,d} shown in Fig. 1. There exists a minimum rainbow
subgraph with 3 vertices. One such subgraph is, for example, the graph induced by the vertex set V ′ = {a,b, c}.

In the rest of the paper we use the following notation. Let {1,2, . . . ,n} be the vertex set of the input graph, m be the
number of edges in G and Δ be the maximum degree in G . We say that a color w is covered by a subgraph G ′ = (V ′, E ′)
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