
JID:TCS AID:9402 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v 1.109; Prn:12/08/2013; 16:34] P.1 (1-17)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Local abstraction refinement for probabilistic timed programs

Klaus Dräger a,∗, Marta Kwiatkowska a, David Parker b, Hongyang Qu a

a Department of Computer Science, University of Oxford, Oxford, UK
b School of Computer Science, University of Birmingham, Birmingham, UK

a r t i c l e i n f o a b s t r a c t

Keywords:
Probabilistic verification
Abstraction refinement

We consider models of programs that incorporate probability, dense real-time and data.
We present a new abstraction refinement method for computing minimum and maximum
reachability probabilities for such models. Our approach uses strictly local refinement
steps to reduce both the size of abstractions generated and the complexity of operations
needed, in comparison to previous approaches of this kind. We implement the techniques
and evaluate them on a selection of large case studies, including some infinite-state
probabilistic real-time models, demonstrating improvements over existing tools in several
cases.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Abstraction refinement is a highly successful approach to the verification of complex infinite-state systems. The basic idea
is to construct a sequence of increasingly precise abstractions of the system to be verified, with each abstraction typically
over-approximating its behaviour. Successive abstractions are constructed through a process of refinement which terminates
once the abstraction is precise enough to verify the desired property of the system under analysis. Abstraction refinement
techniques have also been used to verify probabilistic systems [6,11,13,7], including those with real-time characteristics [16,
17,8] and continuous variables [25]. Frequently, though, practical implementations of these techniques are hindered by the
high complexity of both the abstractions involved and the operations needed to construct and refine them.

In this paper, we target the verification of programs whose behaviour incorporates both probabilistic and real-time
aspects, and which include the manipulation of (potentially infinite) data variables. We analyse systems modelled as prob-
abilistic timed programs (PTPs) [17], whose semantics are defined as infinite-state Markov decision processes (MDPs). We
introduce an abstraction refinement procedure for computing minimum and maximum reachability probabilities in PTPs. As
in [6,11], we use an MDP-based abstraction. This provides outer bounds on reachability probabilities (i.e., a lower bound on
the minimum probability or an upper bound on the maximum). In addition, we compute dual, inner bounds, based on a
stepwise concretisation of adversaries of this abstract MDP, yielding upper and lower bounds on minimum and maximum
probabilities, respectively. Concretisation is also used, for example, in [11], for untimed models. The key difference in our
work is that we aim to keep the abstraction small by using local refinement and simplification operations, so as to reduce
the need for expensive operations such as Craig interpolation.

At the core of our approach is a refinement loop that repeatedly attempts to construct a concrete adversary of the PTP.
This is based on the exploration of the part of the state space on which the current abstract adversary can be concretised.
In each exploration step, we may encounter an inconsistency, in which case we derive a refinement operation and restart.
Otherwise, we numerically solve the constructed adversary, giving inner bounds on the desired probability values. The
refinement loop terminates once the difference between upper and lower bounds is smaller than a specified threshold ε.

* Corresponding author.
E-mail address: klaus.draeger@cs.ox.ac.uk (K. Dräger).

0304-3975/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.07.013

http://dx.doi.org/10.1016/j.tcs.2013.07.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:klaus.draeger@cs.ox.ac.uk
http://dx.doi.org/10.1016/j.tcs.2013.07.013

JID:TCS AID:9402 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v 1.109; Prn:12/08/2013; 16:34] P.2 (1-17)

2 K. Dräger et al. / Theoretical Computer Science ••• (••••) •••–•••

We implement our abstraction refinement approach, deploy it on various large case studies, and compare to the proba-
bilistic verification tools PRISM [18], PASS [9] and FORTUNA [3], illustrating improved performance in many cases. We are
also able to verify probabilistic timed programs containing both real-time behaviour and infinite data variables, which these
tools cannot handle.

1.1. Related work

Abstraction refinement for MDPs and related models is an active research field. In [6], techniques were proposed for
abstracting MDPs using the notion of probabilistic simulation. Building on the same approach to abstraction, [11] developed
a probabilistic version of the classic counterexample-guided abstraction refinement (CEGAR) method, which was then im-
plemented in the tool PASS [9]. This verifies a probability-bounded reachability property using a refinement scheme based
on probabilistic counterexamples and Craig interpolation. In contrast to the implementation of [6], PASS uses predicate ab-
straction, allowing it to analyse infinite-state models. More recent work [15] proposes an alternative probabilistic CEGAR
technique using stochastic tree counterexamples; this applies to finite-state MDPs, on which properties are specified us-
ing simulation rather than reachability. However, all three methods [6,11,15] were applied to discrete-time models (MDPs),
whereas our approach generalises to models with real-time behaviour. We provide an experimental comparison with PASS,
for MDP models, in Section 4.

In [13], a quantitative abstraction refinement technique for MDPs was proposed, using a different form of abstraction
based on stochastic games. This computes lower and upper bounds for reachability probabilities, the difference between
which determines if further refinement is needed. The framework of [13] was subsequently applied to verification of C
programs with probabilistic behaviour [12]. Later extensions to PASS also use game-based abstraction refinement [24]. In
recent work [7], the abstraction frameworks of [13,24] were adapted to handle arbitrary abstract domains, illustrating cases
where this can outperform predicate abstraction. As for [6,11,15] above, though, these methods [13,12,24,7] all focus on
models with a discrete notion of time.

Probabilistic timed automata (PTAs) are a subclass of the probabilistic timed programs (PTPs) that we target in this paper,
since only the latter allows arbitrary (infinite) data variables. For PTAs, several verification techniques exist. Most relevant
here is [16], which extends the abstraction refinement framework of [13] mentioned above, to PTAs, by using zones to
represent abstract states. Other possibilities include the digital clocks discretisation [19] and backwards reachability [21]. The
probabilistic model checker PRISM [18] supports verification of PTAs, using either [16] or [19]. In [16], abstraction refinement
was shown to outperform the other available techniques. Subsequently, an optimised version of backwards reachability,
implemented in the tool FORTUNA [3], was shown to exhibit superior performance on various examples. We compare the
performance of our approach to both PRISM and FORTUNA in Section 4.

Several PTA verification tools do support PTAs with data variables, but they are required to be finite. This includes PRISM,
discussed above, mcpta [10], which translates the modelling language Modest to PRISM using [19], and UPPAAL PRO, which
computes maximum reachability probabilities for PTAs by progressively partitioning the state space into sets of zones.

The closest approaches to the one presented here are [17] and [8]. In [17], an extension of the game-based abstraction
refinement framework of [13] is defined for PTPs, but not implemented. This defines abstractions as stochastic games,
rather than MDPs as in our approach. In recent work [8], PTPs (there called variable-decorated PTAs) are verified using
a combination of discretisation via digital clocks [19] and predicate abstraction methods from PASS [24]. Our approach
avoids the use of discretisation by using zones and aims to improve efficiency by using local refinement and simplification
operations to reduce the size of abstractions. The implementation of [8] is not currently available; we give a brief, indirect
comparison of results in Section 4.

2. Preliminaries

We assume a set V of variables, ranging over a domain D defined by a theory T (linear integer arithmetic in our exam-
ples). We require satisfiability of quantifier-free formulae in T to be decidable. The set of assertions over V , i.e., (conjunctive)
quantifier-free formulae in T , is denoted by Asrt(V), and Val(V) is the set of valuations of V , i.e., functions u : V → D . We
use Assn(V) for the set of assignments over V , given by a term rx for each x ∈ V . The result of applying assignment f to a
valuation u is f (u), given for each x ∈ V by f (u)(x) = u(rx). Given an assignment f and an assertion ϕ , the composition
ϕ ◦ f is defined by (ϕ ◦ f)(u) ≡ ϕ(f (u)).

For a set S , we use P(S) to denote the set of subsets of S and D(S) for the set of discrete probability distributions over S ,
i.e. finite-support functions � : S → [0,1] such that

∑
s∈S �(s) = 1. A distribution � ∈ D(S) with support {s1, . . . , sn} and

�(s j) = λ j will also be written λ1s1 + · · · + λnsn .

2.1. Clocks

We use a set X of clock variables to represent the time elapsed since the occurrence of various events. The set of
clock valuations is RX

�0 = {v : X → R�0}. For any clock valuation v and δ ∈ R�0, the delayed valuation v + δ is defined by
(v + δ)(x) = v(x)+ δ for all x ∈X . For a subset Y ⊆X , the valuation v[Y :=0] is obtained by setting all clocks in Y to 0, i.e.,
v[Y :=0](x) is 0 if x ∈ Y and v(x) otherwise. The valuation 0 has all clocks set to 0.

Download English Version:

https://daneshyari.com/en/article/6876196

Download Persian Version:

https://daneshyari.com/article/6876196

Daneshyari.com

https://daneshyari.com/en/article/6876196
https://daneshyari.com/article/6876196
https://daneshyari.com

