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Probabilistic model checking computes the probability values of a given property quanti-
fying over all possible schedulers. It turns out that maximum and minimum probabilities
calculated in such a way are over-estimations on models of distributed systems in which
components are loosely coupled and share little information with each other (and hence
arbitrary schedulers may result too powerful). Therefore, we introduced definitions that
characterise which are the schedulers that properly capture the idea of distributed be-
haviour in probabilistic and nondeterministic systems modelled as a set of interacting
components.
In this paper, we provide an overview of the work we have done in the last years which
includes: (1) the definitions of distributed and strongly distributed schedulers, providing
motivation and intuition; (2) expressiveness results, comparing them to restricted versions
such as deterministic variants or finite-memory variants; (3) undecidability results—in
particular the model checking problem is not decidable in general when restricting to
distributed schedulers; (4) a counterexample-guided refinement technique that, using stan-
dard probabilistic model checking, allows to increase precision in the actual bounds in the
distributed setting; and (5) a revision of the partial order reduction technique for proba-
bilistic model checking. We conclude the paper with an extensive review of related work
dealing with similar approaches to ours.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Markov decision processes (MDPs) are widely used in diverse fields ranging from ecology to computer science. They
are useful to model and analyse systems in which both probabilistic and nondeterministic choices interact. MDPs can be
automatically analysed using quantitative model checkers such as PRISM [24] or LiQuor [10].

Since MDPs contain nondeterministic choices (in addition to probabilistic steps), the model checking problem is to find
out the largest or smallest probability of reaching a goal under any possible resolution of the nondeterministic choices,
a concrete instance being “the probability of arrival of a package is at least 0.95 no matter how the package is routed”. The
resolution of such nondeterminism is given by the so-called schedulers (called also adversaries or policies—see e.g. [4,28])
which choose an enabled transition after each finite execution path of the system.
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Fig. 1. T tosses a coin and G has to guess.

The available tools for model checking such as PRISM [24] or LiQuor [10] calculate the worst-case probability consid-
ering all possible schedulers. However, in distributed systems, some schedulers correspond to unrealistic resolutions of the
nondeterminism (as we illustrate below) thus resulting in overly pessimistic worst-case probabilities. A restricted class of
schedulers was proposed to cope with this problem in previous literature—see e.g. [13,9,8,12,16]. We call these schedulers
distributed schedulers, since in these settings there is a local scheduler for each component and so the resolution of the
nondeterminism is distributed among the different components.

In this paper, we investigate different subclasses of distributed schedulers in order to answer to which extent these
subclasses are able to attain the worst-case probability. The subclasses we consider are strongly related to the development
of techniques for MDP analysis. As an example, if the class of all schedulers is considered, worst-case probabilities of
reachability properties are attained by schedulers that are both Markovian—i.e. the decision is based on the current state
of the execution, disregarding the previous history—and deterministic—i.e. the schedulers themselves have no probabilistic
choices, see [4]. The existence of this subclass ensures that the worst-case probability can be found by exhaustive search
(notice that more efficient methods exist [4]). Hence, one may like to know to which extent these results hold in case the
schedulers are restricted to be distributed.

1.1. Unrealistic worst cases and distributed schedulers

A scheduler is a function mapping paths to transitions (or, in the more general case, paths to distributions on transitions).
Given that the execution up to some state s is known (namely, the history path), the scheduler “chooses” to perform one
transition out of all transitions enabled in state s.

The following example illustrates the problem that motivates the introduction of distributed schedulers: a man tosses a
coin and another one has to guess heads or tails. Fig. 1 depicts the models of these two men in terms of MDPs. Man T ,
who tosses the coin, has only one transition which represents the toss of the coin: with probability 1

2 he moves to state
headsT and with probability 1

2 he moves to state tailsT . Instead, man G has two possible transitions, each one representing
his choice: headsG or tailsG . An all-knowing scheduler for this system may let G guess the correct answer with probability 1
according to the following sequence: first, it lets T toss the coin, and then it chooses for G the transition leading to heads if
T tossed a head or the transition leading to tails if T tossed a tail. Therefore, the supremum probability of guessing obtained
by quantifying over these all-knowing schedulers is 1, even if T is a smart player that always hides the outcome until G
reveals his choice. As a consequence, quantitative model checkers based on [4], though safe, yield an overestimation of the
correct value. In this example, in which T and G do not share all information, we would like that the supremum probability
of guessing (i.e., of reaching any of the states (headsT ,headsG) or (tailsT , tailsG)) is 1

2 .
This observation is fundamental in distributed systems in which components share little information with each other, as

well as in security protocols, where the possibility of information hiding is a fundamental assumption [6]. Similar phenom-
ena to the one we illustrated have been observed in [28] from the point of view of compositionality and studied in [12,13,9]
in different settings. Distributed schedulers are also related to the partial-information policies of [12].

In order to avoid considering these unrealistic behaviours, distributed schedulers were proposed in previous literature.
Local schedulers for each component of the system are defined in the usual way (that is, the choices are based on the
complete history of the component) and distributed schedulers are defined to be the schedulers that can be obtained
by composing these local schedulers. We remark that the “all-knowing” scheduler of the example would not be a valid
scheduler in this new setting since the choice for G depends on information which is external to (and not observable by) G .
In contrast, a local scheduler for G takes the decision having no information about the actual state of T , and so the choice
cannot conveniently vary according to the outcome of T .

Previous work in the area either deals with nondeterminism in a unique manner (regardless whether it originates from
local choices or from the interleaving) or simply focuses on local choices avoiding the resolution of interleaving nondeter-
minism (either by assuming full synchronisation [13] or by model construction [9]; see Section 7 for a detailed comparison).
If we allow interleaving nondeterminism, the schedulers can also be restricted to handle this nondeterminism in a realistic
way. So, we motivate a restriction to distributed schedulers in this direction, and define the strongly distributed schedulers
as the schedulers complying with such restriction.

1.2. Overview of the paper

This article surveys the state of the art of model checking for distributed probabilistic systems modelled as a network of
interconnecting probabilistic I/O automata. It collects and summarises the work that we have done in the last years since
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