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The recurrence function R w (n) of an infinite word w was introduced by Morse and Hedlund
in relation to symbolic dynamics. It is the size of the smallest window such that, wherever
its position on w , all length n subwords of w will appear at least once inside that window.
The recurrence quotient ρ(w) of w , defined as lim sup R w (n)

n , is useful for studying the
growth rate of R w (n). It is known that if w is periodic, then ρ(w) = 1, while if w is
not, then ρ(w) � 3. A long standing conjecture from Rauzy states that the latter can be

improved to ρ(w) � 5+√
5

2 ∼ 3.618, this bound being true for each Sturmian word and
being reached by the Fibonacci word. In this paper, we study in particular the spectrum of
values taken by the recurrence quotients of infinite partial words, which are sequences that
may have some undefined positions. In this case, we determine exactly the spectrum of
values, which turns out to be 1, every real number greater than or equal to 2, and ∞. More
precisely, if an infinite partial word w is “ultimately factor periodic”, then ρ(w) = 1, while
if w is not, then ρ(w) � 2, and we give constructions of infinite partial words achieving
each value.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A topic of interest on infinite words is the one of recurrence. An infinite recurrent word is one in which all of the finite
subwords appear infinitely often, where finite subwords are finite contiguous blocks of letters. Many concepts dealing with
recurrence were introduced by Morse and Hedlund in [8] in relation to symbolic dynamics. More recently, in [5], Cassaigne
presented some results that establish connections between recurrence and the subword complexity pw(n) of an infinite
word w , which is the number of distinct subwords of length n in w . He also described, under some conditions, a method
for computing the recurrence function R w(n) of an infinite word w , which is the minimum length such that every contiguous
block of letters in w of this length contains every length n subword of w .

The recurrence quotient of an infinite word w is defined to be ρ(w) = lim sup R w (n)
n . Cassaigne studied in [4] the spectrum

of possible recurrence quotients for Sturmian words (those with subword complexity n + 1 [7]). It is a compact subset
of [0,∞] with empty interior, it has cardinality of the continuum, and its smallest accumulation point is approximately
4.58565. He discussed in [5] the spectrum of values S ⊂ R ∪ {∞} taken by ρ for arbitrary words, about which much less
is known. Periodic words, those of the form xω , have a quotient ρ of 1, and he proved, using graph representations, that
ρ � 3 otherwise.
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Theorem 1. (See [5].) Lower bounds for the recurrence quotients achievable by infinite words w are:

• If w is periodic, then ρ(w) = 1;
• If w is nonperiodic, then ρ(w) � 3.

Note that this bound of 3 improved an earlier bound of 2 that can be easily deduced from Hedlund and Morse’s inequal-
ities that R w(n) � pw(n) + n − 1 and pw(n) � n + 1 for nonperiodic recurrent words [8] (as was mentioned in [5], if w is a
recurrent infinite word that is not periodic, then R w(n) � 2n). However, the bound of 3 is not tight and Rauzy conjectured

that the minimum value for nonperiodic words is 5+√
5

2 ∼ 3.618, which is achieved by the well-known Fibonacci word

0100101001001010010100100101001001 . . .

defined by Fn+2 = Fn+1 Fn , where F0 = 0 and F1 = 01 [10]. Very little else is known about the topological structure of S .
How do these results related to recurrence in infinite words translate to the framework of infinite partial words? Partial

words are sequences over a finite alphabet that may contain wildcard symbols, called holes, which match or are compatible
with all letters; partial words without holes are said to be full words (or simply words). Combinatorics on partial words was
initiated by Berstel and Boasson in the context of gene comparison [1] and has been developing since (see for instance [2]).
In [3], Blanchet-Sadri et al. introduced recurrent infinite partial words. Their results culminate in showing that the various
completions of an infinite partial word w , i.e., infinite full words built by filling in the holes of w with letters from the
alphabet, can achieve subword complexities equal or close to that of w if and only if w is recurrent or ultimately recurrent
(ultimate recurrence of w means recurrence of some suffix of w).

As mentioned earlier, the exact spectrum S of achievable recurrence quotients for infinite full words is not known,
although it is known to be included in {1} ∪ [3,∞] (see Theorem 1). In this paper, we consider the recurrence quotients of
infinite partial words. Our main result, Theorem 2, states that the exact spectrum S� of achievable recurrence quotients for
infinite partial words is {1} ∪ [2,∞].

Theorem 2. The spectrum of recurrence quotients achievable by partial words is S� = {1} ∪ [2,∞]. More precisely, the following hold
for infinite partial words w:

• If w is ultimately factor periodic, then ρ(w) = 1;
• If w is not ultimately factor periodic, then ρ(w) ∈ [2,∞].

Note that to obtain different spectra in the context of partial words, we need to consider factor periodicity and not just
periodicity as in the context of full words (see Section 2 for the definition of these terms). Moreover, we give constructions
of infinite partial words achieving each value in S� . We also provide some results showing how the distribution of holes in
a recurrent infinite partial word w implies the nonultimate periodicity of w , strenghtening some results in [3].

The contents of our paper is as follows: In Section 2, we introduce our notations and terminology on partial words.
In Section 3, we study the spectrum of values for recurrence quotients of infinite partial words. In Section 3.1 we prove that
only the values in {1} ∪ [2,∞] are possible recurrence quotients, and in Section 3.2 we give explicit constructions achieving
each value. In Section 4, we give some properties of recurrent partial words. We present some relations between recurrence
and periodicity as well as a relation between uniform recurrence and subword complexity. Finally in Section 5, we conclude
with some remarks.

2. Preliminaries

For more information on basics of partial words, we refer the reader to [2]. Unless explicitly stated, A is a finite al-
phabet that contains at least two distinct letters 0 and 1. We denote the set of all words over A by A∗ , which under the
concatenation operation forms a free monoid whose identity is the empty word ε.

A finite partial word of length n over A is a function w : {0, . . . ,n − 1} → A ∪ {�}, where � /∈ A. The union set A ∪ {�} is
denoted by A� and the length of w by |w|. A right infinite partial word or infinite partial word over A is a function w :N→ A� .
In both the finite and infinite cases, the symbol at position i in w is denoted by wi . If wi ∈ A, then i is defined in w , and if
wi = �, then i is a hole in w . If w has no holes, then w is a full word. Two finite partial words u and v of same length are
compatible, denoted u ↑ v , if ui = vi whenever ui, vi ∈ A. Equivalently, u and v are compatible if there exists a full word w
which is a completion of both u and v , that is, we can fill the holes of u and v and obtain w in either case.

Let w = w0 w1 w2 . . . be an infinite partial word over A. We say that the finite partial word u is a factor of w if u is
a block of consecutive symbols of w , that is, w = xuy for some partial words x, y. We say that the finite full word v
is a subword of w if v is compatible with some factor of w . We write Subw(n) to denote the set of length n subwords
of w , and Sub(w) to denote the set of all subwords of w . The subword complexity of w is the function defined by pw(n) =
| Subw(n)|. For example, if w = 001000�010�1 . . . and A = {0,1}, then 00001 and 00101 are the subwords compatible with
the underlined factor of w . We can check that Subw(2) = {00,01,10,11} and pw(2) = 4.
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