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a b s t r a c t

Random walks in graphs have been applied to various network exploration and network
maintenance problems. In some applications, however, it may be more natural, and more
accurate, tomodel the underlying networknot as a graphbut as a hypergraph, and solutions
based on random walks require a notion of random walks in hypergraphs. At each step, a
random walk on a hypergraph moves from its current position v to a random vertex in a
randomly selected hyperedge containing v. We consider two definitions of cover time of a
hypergraphH . If thewalk sees only the vertices itmoves between, then the usual definition
of cover time, C(H), applies. If the walk sees the complete edge during the transition, then
an alternative definition of cover time, the inform time I(H) is used. The notion of inform
time models passive listening which fits the following types of situations. The particle
is a rumour passing between friends, which is overheard by other friends present in the
group at the same time. The particle is a message transmitted randomly from location to
location by a directional transmission in an ad-hoc network, but all receivers within the
transmission range can hear.

In this paper we give an expression for C(H) which is tractable for many classes of hy-
pergraphs, and calculate C(H) and I(H) exactly for random r-regular, s-uniform hyper-
graphs. We find that for such hypergraphs, whp, C(H)/I(H) ∼ s(r − 1)/r , if rs = O((log
log n)1−ϵ). For random r-regular, s-uniform multi-hypergraphs, constant r ≥ 2, and 3 ≤

s ≤ O(nϵ), we also prove that, whp, I(H) = O((n/s) log n), i.e. the inform time decreases
directly with the edge size s.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The idea of a random walk on a hypergraph is a natural one. The particle making the walk picks a random edge incident
with the current vertex. The particle enters the edge, and exits via a random endpoint, other than the vertex of entry. Two
alternative definitions of cover time are possible for this walk. Either the particle sees only the vertices it visits, or it inspects
all vertices of the hyperedge during the transition across the edge.

A randomwalk on a hypergraph models the following process. The vertices of a network are associated into groups, and
these groups define the edges of the network. In the simplest case, the network is a graph so the groups are exactly the
edges of the graph. In general, the groups may be larger, and represent friends, a family, a local computer network, or all
receivers within transmission range of a directed transmission in an ad-hoc network. In this case the network is modelled as
a hypergraph, the hyperedges being the group relationships. An individual vertex can be in many groups, and two vertices
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are neighbours if they share a commonhyperedge.Within the network a particle (message, rumour, infection, etc.) ismoving
randomly fromvertex to neighbouring vertex.When this transition occurs all vertices in a given group are somehowaffected
(infected, informed) by thepassage of the particlewithin the group. Examples of this type of process include the following. The
particle is an infection passed from person to person and other familymembers also become infectedwith some probability.
The particle is a virus travelling on a network connection in an intra-net. The particle is a message transmitted randomly
from location to location by a directional transmission in an ad-hoc network, and all receivers within the transmission range
can hear. The particle is a rumour passing between friends, which may be overheard by other friends present in the group
at the same time.

Let H = (V (H), E(H)) be a hypergraph. For v ∈ V = V (H) let d(v) be the degree of v, i.e. the number of edges e ∈ E =

E(H) incident with v, and let d(H) =


v∈V d(v) be the total degree of H . For e ∈ E, let |e| be the size of hyperedge e, i.e. the
number of vertices v ∈ e, respecting multiplicity. Let N(v) be the neighbour set of v, N(v) = {w ∈ V : ∃e ∈ E, e ⊇ {v, w}}.
We regard N(v) as a multi-set in which each w ∈ N(v) has a multiplicity equal to the number of edges e containing both v
andw. A hypergraph is r regular if each vertex is in r edges, and is s-uniform if every edge is of size s. A hypergraph is simple
if no edge contains a repeated vertex, and no two edges are identical. We assume a particle or message originated at some
vertex u and, at step t , is moving randomly from a vertex v to a vertex w in N(v). We model the problem conceptually as a
random walk Wu = (Wu(0),Wu(1), . . . ,Wu(t), . . .) on the vertex set of hypergraph H , where Wu(0) = u, Wu(t) = v and
Wu(t + 1) = w ∈ N(v).

Several models arise for reversible random walks on hypergraphs. Assume that the walk W is at vertex v, and consider
the transition from that vertex. In the first model (Model 1), an edge e incident with v is chosen proportional to |e| − 1.
The walk then moves to a random endpoint of that edge, other than v. This is equivalent to v choosing a neighbour w u.a.r.
(uniformly at random) from N(v), where vertexw is chosen according to its multiplicity in N(v). The stationary distribution
of v in Model 1 is given by

πv =


e:v∈e

(|e| − 1)
e∈E(H)

|e|(|e| − 1)
.

In the case of graphs this reduces to πv = d(v)/2m, where m is the number of edges in the graph. Alternatively (Model 2)
when W is at v, edge e is chosen u.a.r. from the hyperedges incident with v, and then w is chosen u.a.r. from the vertices
w ∈ e, w ≠ v. The stationary distribution of v in Model 2 is given by

πv =
d(v)

u∈V (H)

d(u)
,

which corresponds to the familiar formula for graphs. If the hypergraph is uniform (all edges have the same size) then the
models are equivalent.

Random walks on graphs are a well studied topic, for an overview see e.g. [1,11]. Random walks on hypergraphs were
used in [5] to cluster together electronic components which are near in graph distance for physical layout in circuit design.
For that application, edges were chosen inversely proportional to their size, and then a random vertex within the edge was
selected. A random walk model is also used for generalised clustering in [13]. As before, the aim is to partition the vertex
set, and this is done via the Laplacian of the transition matrix. This technique has applications in data mining (see [10]) and
clustering images from the www (see [15] and references therein). The paper [3] directly considers notions of cover time
for random walks on hypergraphs, using Model 2. A further discussion of [3] is given below.

For a hypergraph H , we define the (vertex) cover time C(H), the edge cover time CE(H), and the inform time I(H). The
(vertex) cover time C(H) = maxu Cu(H), where Cu(H) is the expected time for thewalkWu to visit all vertices ofH . Similarly,
the edge cover time CE(H) = maxu Cu,E(H), where Cu,E(H) is the expected time to visit all hyperedges starting at vertex u.

Suppose that the walk Wu is at vertex v. Using e.g. Model 2, the walk first selects an edge e incident with v and then
makes a transition to w ∈ e. The vertices of e are said to be informed by this move. The inform time I(H), introduced in [3]
as the radio cover time, is the maximum over start vertices u, of the expected time at which all vertices of the graph are
informed. More formally, let Wu(t) = (Wu(0),Wu(1), . . . ,Wu(t)) be the trajectory of the walk. Let e(j) be the edge used
for the transition fromW (j) toW (j + 1) at step j. Let Su(t) = ∪

t−1
j=0 e(j) be the set of vertices spanned by the edges of Wu(t).

Let Iu be the step t at which Su(t) = V for the first time, and let I(H) = maxu E(Iu). We use the name ‘‘inform time’’ rather
than ‘‘radio cover time’’ in [3] to indicate the relevance of this term beyond the radio networks.

Several upper bounds on the cover time C(H) are readily obtainable, for example an analogue of the O(nm) bound for
graphs [2] based on a twice round the spanning tree argument. For Model 1, replace each edge e by a clique of size


|e|
2


to

obtain an upper bound of O(nms2) for connected hypergraphs. Here s2 is the expected squared edge size (


e∈E(H) |e|2)/m.
Thus C(H) = O(n3m). A better bound of O(nms) = O(n2m) was shown in [3] for Model 2.

Similarly, a Matthews type bound of O(log n · maxu,v E(Hu,v)) on the cover time exists, where E(Hu,v) is the expected
hitting time of v starting from u. We contribute a bound on the cover time of a hypergraph given in Theorem 1, which allows
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