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a b s t r a c t

We present a certified and complete algorithm to compute arrangements of real planar
algebraic curves. It computes the decomposition of the plane induced by a finite number
of algebraic curves in terms of a cylindrical algebraic decomposition. From a high-level
perspective, the overall method splits into two main subroutines, namely an algorithm
denoted Bisolve to isolate the real solutions of a zero-dimensional bivariate system, and
an algorithm denoted GeoTop to compute the topology of a single algebraic curve.

Compared to existing approaches based on elimination techniques, we considerably
improve the corresponding lifting steps in both subroutines. As a result, generic position of
the input system is never assumed, and thus our algorithm never demands for any change
of coordinates. In addition, we significantly limit the types of symbolic operations involved,
that is, we only use resultant and gcd computations as purely symbolic operations. The
latter results are achieved by combining techniques from different fields such as (modular)
symbolic computation, numerical analysis and algebraic geometry.

We have implemented our algorithms as prototypical contributions to the C++-project
Cgal. We exploit graphics hardware to expedite the remaining symbolic computations.We
have also compared our implementation with the current reference implementations, that
is, Lgp and Maple’s Isolate for polynomial system solving, and Cgal’s bivariate algebraic
kernel for analyses and arrangement computations of algebraic curves. For various series
of challenging instances, our exhaustive experiments show that the new implementations
outperform the existing ones.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Computing the topology of a real planar algebraic curve

C = V (f ) = {(x, y) ∈ R2
: f (x, y) = 0} (1.1)

can be considered as one of the fundamental problems in real algebraic geometry with numerous applications in
computational geometry, computer graphics and computer aided geometric design. Typically, the topology of C is given
in terms of a planar graph GC embedded in R2 that is isotopic to C .1 For a geometric-topological analysis, we further require
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1 Throughout the paper, we consider the stronger notion of an ambient isotopy, but omit the word ‘‘ambient’’. The graph GC is ambient isotopic to

C if there exists a continuous mapping φ : [0, 1] × R2
→ R2 with φ(0, ·) = idR2 , φ(1, C) = GC , and φ(t0, ·) : R2

→ R2 is a homeomorphism for
each t0 ∈ [0, 1]. Notice that, for an ambient isotopy, it is crucial that the deformation takes place in the ambient space (here R2) in which the objects are
embedded.

0304-3975/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.04.014

http://dx.doi.org/10.1016/j.tcs.2013.04.014
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:eric@mpi-inf.mpg.de
mailto:asm@mpi-inf.mpg.de
mailto:akobel@mpi-inf.mpg.de
mailto:msagralo@mpi-inf.mpg.de
http://dx.doi.org/10.1016/j.tcs.2013.04.014


2 E. Berberich et al. / Theoretical Computer Science 491 (2013) 1–32

the vertices of GC to be located on C .2 In this paper, we study the more general problem of computing an arrangement of a
finite set of algebraic curves, that is, the decomposition of the plane into cells of dimensions 0, 1 and 2 induced by the given
curves. The proposed algorithm is certified and complete, and the overall arrangement computation is exclusively carried out
in the initial coordinate system. Efficiency of our approach is shown by implementing our algorithm based on the current
reference implementationwithin Cgal3 (see also [22,60]) and comparing it to themost efficient implementations which are
currently available.

From a high-level perspective, we follow the same approach as in [22,60]. That is, the arrangement computation is
reduced to the geometric-topological analysis of single curves and of pairs of curves. Themain contribution of this paper is to
provide solutions for the basic subtasks needed by these analysis, that is, isolating the real solutions of a bivariate polynomial
system (Bisolve) and computing the topology of a single algebraic curve (GeoTop).

Bisolve: For a given zero-dimensional polynomial system f (x, y) = g(x, y) = 0 (i.e. there exist only finitely many
solutions), with f , g ∈ Z[x, y], the algorithm computes disjoint isolating boxes B1, . . . , Bm ⊂ R2 for all real solutions,
where each box Bi contains exactly one solution. In addition, the boxes can be refined to an arbitrarily small size. Bisolve
is a classical elimination method which follows the same basic idea as the Grid method from [21] for solving a bivariate
polynomial system, or the Insulate method from [54] for computing the topology of a planar algebraic curve.4 Namely, all
of the latter mentioned methods consider several projection directions to derive a set of candidates of possible solutions
and eventually identify those candidates which are actually solutions.

For Bisolve, we separately eliminate the variables x and y by means of resultant computations. Then, for each possible
candidate (represented as a pair of projected solutions in x- and y-direction), we check whether it actually constitutes
a solution of the given system or not. The proposed method comes with a number of improvements compared to the
aforementioned approaches and also to other existing elimination techniques [22,3,37,46,47]. First, we considerably reduce
the amount of purely symbolic computations, namely, our method only requires resultant computations of bivariate
polynomials and the computation of gcds for univariate polynomials. Second, our implementation profits from a recent
approach [25–27] to compute resultants and gcds exploiting the power of Graphics Processing Units (GPUs). Here, it is
important to remark that, in comparison to the classical resultant computation on the CPU, the GPU implementation is
typically more than 100-times faster. Our experiments show that, for the huge variety of considered instances, the symbolic
computations are no longer a ‘‘global’’ bottleneck of an elimination approach: For a majority of the considered instances,
the running time for the purely symbolic operations is less than 10% of the total running time, whereas finding the roots
of the resultant polynomial becomes the major bottleneck (with a running time of more than 50%). Third, the proposed
method never uses any kind of a coordinate transformation, even for systems with two solutions sharing the same x- or y-
coordinate. The latter fact is due to a novel inclusion predicate which combines information from the resultant computation
and a homotopy argument to prove that a certain candidate box is isolating for a solution. Sincewe never apply any change of
coordinates, our algebraic tools, such as computing resultants, particularly profit in caseswhere f and g are sparse. Since our
inclusion predicate is local, our method also suits very well for finding solutions within a given local box. In these cases, real
root isolation is restricted to the intervals defined by the projection of the box.5 Finally, we integrated a series of additional
filtering techniques which allow us to considerably speed up the computation for the majority of instances.

GeoTop: There exist a number of certified and complete approaches to determine the topology of an algebraic curve; we
refer the reader to [2,15,16,23,31,35,44] for recent work and further references. At present, only a few of these methods also
extend to the computation of arrangements of arbitrary algebraic curves [2,22]. Common to most of the above mentioned
approaches is that, in essence, they consider the following three phases:

1. Projection: Elimination techniques (e.g. resultants) are used to project the x-critical points (i.e. points p on the (complex)
curve C = {(x, y) ∈ C2

: f (x, y) = 0} with fy(p) = 0) of the curve into one dimension. The so obtained projections are
called x-critical values.

2. Lifting: For all real x-critical values α (as well as for real values in between), we compute the fiber, that is, all intersection
points of C with a corresponding vertical line x = α.

3. Connection (in the topology computation of a single curve): The so obtained points are connected by straight line edges
in an appropriate manner.

In general, the lifting step at an x-critical value α has turned out to be the most time-consuming part because it amounts
to determining the real roots of a non square-free univariate polynomial fα(y) := f (α, y) ∈ R[y] with algebraic

2 In general, points located on C are not exactly representable by floating point or rational numbers. Therefore, our algorithm returns all vertices of GC in
terms of isolating intervals. More precisely, for a vertex (α, β) of the graph GC , it provides a polynomial R(y)

∈ Z[x], and intervals I(α) ⊂ R and I(β) ⊂ R
such that I(α) isolates α as a root of R(y) , and I(β) isolates β as a root of f (α, y) ∈ R[y].
3 Computational Geometry Algorithms Library, www.cgal.org; see also http://exacus.mpi-inf.mpg.de/cgi-bin/xalci.cgi for an online demo on

arrangement computation.
4 For the topology computation of a planar curve C = {(x, y) ∈ R2

: f (x, y) = 0}, it is crucial to find the solutions of f = fy = 0. The method in [54]
uses several projection directions to find these solutions.
5 Solutions on the boundary of a box with rational corners can be detected using an arbitrary real root isolator such as the Descartes method.
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