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a b s t r a c t

In this work, we provide a new post-processing procedure for automatically adjusting node locations of
an all-hex mesh to better match the volume of a reference geometry. This process is particularly well-
suited for mesh-first approaches, as overlay grid ones. In practice, hexahedral meshes generated via an
overlay grid procedure, where a precise reference geometry representation is unknown or is impractical
to use, do not provide for precise volumetric preservation. A discrete volume fraction representation of
the reference geometryM I on an overlay grid is compared with a volume fraction representation of a 3D
finite elementmeshMO. Thiswork introduces the notion of localized discrepancy betweenM I andMO and
uses it to design a procedure that relocates mesh nodes to more accurately match a reference geometry.
We demonstrate this procedure on a wide range of hexahedral meshes generated with the Sculpt code
and show improved volumetric preservation while still maintaining acceptable mesh quality.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Overlay grid methods [1–4] developed in recent years have
dramatically improved the ability to rapidly and automatically
generate hexahedral meshes for complex geometries in massively
parallel environments. Thesemethods utilize amesh-first approach
to mesh generation where an initial base grid is used to overlay
the reference geometry. Procedures to modify the base grid are
employed to best capture the geometry to define a conformal all-
hex mesh. In contrast, geometry-first mesh generation approaches
[5–7] rely on user-intensive procedures to first clean and then
decompose the geometry to fit blocking or sweeping topologies.
Because of the nature of geometry-first approaches, thesemethods
can in most cases very accurately preserve volume of a reference
geometry subject only to a user defined mesh resolution, and
would therefore benefit little from the proposedwork. However, as
geometry-first technologies for hex meshing are not automated or
do not scale for general use, mesh-first procedures, such as overlay
grid, are often preferred and consequently the focus of this work.

In this work, we focus on Sandia’s Sculpt [4] algorithm, which is
an overlay grid procedure. Whatever the geometric input you con-
sider (CADmodel, facetedmodel, scanner image, volume fraction),
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a preprocess of the algorithm consists in building a volume frac-
tion representation of the geometry on a Cartesian or adaptively
refined grid. In general cases, this grid consists in discretizing the
bounding box of the geometric model we work on. The grid is then
geometrically and topologically modified to fit volume fractions
as best as possible. For instance, the primal contouring approach
described in [4] will adjust nodes of the base grid to conform to
an approximation of the reference geometry prior to application of
pillowing and smoothing operations. Because of the approximate
nature of the interface reconstruction procedure combined with
smoothing, the resulting full-hex mesh may not precisely conform
to the reference geometry. While in most cases Sculpt meshes
have proven accurate in simulation compared to pave and sweep
approaches [8], we note one potential deficiency. In some cases
where localized densities and material properties demand accu-
rate volume preservation, the interface reconstruction employed
by Sculpt and other overlay grid algorithms may not provide suf-
ficient precision. The main objective of the presented work is to
tackle this issue and so to improve volume conservation of each
input material as best as possible.

For our purposes, we consider both explicit and implicit ge-
ometry representations with multiple components or materials.
Explicit geometry includes B-Rep standards such as CAD and STL
models while implicit can include 3D image data and volume
fractions on a Cartesian grid. Both types of input can be meshed
using overlay gridmethods. For explicit geometry representations,
closest-point projection to B-Rep surfaces may be employed to
accurately capture the reference geometry and correctly preserve
volume. However, we note that projection operations in overlay
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Fig. 1. (a) CADmodel for the brick-cylinder case. (b)MO mesh generated by Sculpt. (c) modifiedMO mesh obtained after applying our method. (d) Close-up of one corner of
the mesh shown in (b). (e) Close-up of same corner of the mesh shown in (c). Note that the proposed method better represents geometric corners.

grid methods can often create topology cases that cannot be ad-
equately smoothed, resulting in inverted elements. For example,
these can include cases where more than one face of a hex lies
on a single surface or multiple edges of the same hex lie on the
same curve. To correct for these instances, special case topology
operations are often employed to locally improve quality [9,10].
These operations, while effective in some cases, can be complex
and difficult to employ, and in many cases can result in severely
distorted elements.

The proposed volume preservation algorithm concentrates in-
stead on relocating nodes of themesh tomore accurately represent
the underlying reference geometry without the need for complex
topology operations. The generalized approach we propose pro-
vides both for explicit geometry, and for implicit geometry where
only the localized volume fraction information is knownandwhere
exact closest-point operations are otherwise not practical.

1.1. Related works

In the present work, we focus on the ability of improving
the volume of a multi-material mesh M where each cell of M is
pure, i.e. is filled by a single material. The expected volume for
each material is also an input of the process, and is given in the
form of another mesh carrying volume fractions in each cells. This
purpose is quite unusual and, to our knowledge, only a few works
have focused on it. In [11], the authors extended their interface
reconstruction method [12] by iteratively moving the obtained in-
terfaces, represented by triangle surfacic meshes in 3D, combining
a Laplacian smoothing and a volume control contribution. Their
method is dedicated to visualization purposes and one of their
concerns is to obtain ‘‘good quality’’ triangles; they can also adapt
the surfacic meshes, depending for example on a triangle edge
length criteria threshold. Such adaptation techniques would not
directly apply in our context where we build full hex meshes and
not triangular meshes.

Interface reconstruction methods, such as Volume-Of-Fluids
[13–15] although closely related, also do not directly apply. Indeed,
starting from volume fractions prescribed on any unstructured
mesh, VOF methods attempt to build in-cell interfaces with strict
volume preservation, precisely controlling volume inside each cell
of the input. However rather than producing pure computational
elements, they can yieldmixed elements in the outputmeshwhere
local interfaces are defined by discrete planar geometry. Such
interfaces are globally non-conforming and are typically useful for
visualization processes, during the advection step in simulation
codes or refinement in AMR [16] codes. On the contrary, overlay-
grid algorithms such as Sculpt’s algorithm provide a conformal
hexahedral mesh with pure cells. This mesh can then be used
directly, or its faces at material interfaces can be considered as
forming a faceted geometric model used as a support for hexmesh
generation using other methods [17].

1.2. Main contributions

The method we propose in this paper improves the volume
conservation of an outputmesh that has been constructed using an
all-hex overlay grid method. Such algorithms start from a 3D input
meshM I where each cell can be pure or mixed. As an output, they
produce an unstructured hexahedral mesh MO, where each cell is
pure, i.e. ‘‘filled’’ by only one material. Although meshes produced
in this manner will maintain watertight, smooth and containman-
ifold interfaces between materials, they do not precisely control
for the overall volume of the mesh. To overcome this issue, we
propose:

1. The definition of a localized discrepancy between M I and
MO, which helps us to compute volume differences in a local
manner (see Section 3);

2. An heuristic algorithm to geometrically modify the location
of the nodes ofMO that are on the interface between at least
two materials (see Section 4);

3. A variety of different samples to illustrate the impact and
the benefits of the proposed solution (see Section 5).

2. A brief presentation of the overlay-grid strategy in Sculpt

In order to illustrate the general behavior of overlay-grid al-
gorithms, we consider the Sculpt algorithm [4], which handles
both implicit and explicit geometry representations. Sculpt uses
an interface reconstruction procedure that relies on a volume frac-
tion representation of the geometry on a Cartesian or adaptively
refined grid. Let us consider Fig. 2 to understand the basic Sculpt
procedure, beginning with a Cartesian grid as the input mesh M I ,
shown in Fig. 2(a). Provided as input, or computed from a CAD or
STL description, volume fractions that satisfy Eq. (1), serve as the
basis for the Sculpt procedure. Fig. 2(b) shows a representation of a
field of gradient vectors that are computed from the scalar volume
fraction data using finite differences of neighboring cells and a
least squares approximation of the localized data. Locations where
interfaces will most likely cross the virtual edges connecting cell
centers are then computed as illustrated in 2(c). Using the local gra-
dient and edge cross locations, node locations of the base grid are
repositioned to approximate the interfaces of the reference geome-
try as shown in 2(d). Fig. 2(e) then shows conformal layers of hexes
or pillows inserted at the interfaces to provide additional degrees
of freedom to allow for improvement using smoothing. Finally, in
Fig. 2(f), combined Laplacian and optimization-smoothing oper-
ations are performed, constraining nodes at interfaces to remain
on the approximated surfaces and interior nodes repositioned to
optimize mesh quality.

The aim of our work is to relocate the nodes of the mesh shown
on Fig. 2(f) to best fit the volume fraction provided as an input and
shown on Fig. 2(a).
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