
Please cite this article in press as: Dassi F., et al. Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction.
Computer-Aided Design (2017), https://doi.org/10.1016/j.cad.2017.11.010.

Computer-Aided Design () –

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Tetrahedral mesh improvement using moving mesh smoothing, lazy
searching flips, and RBF surface reconstruction✩

Franco Dassi a, Lennard Kamenski b,*, Patricio Farrell b, Hang Si b
a Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
b Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

a r t i c l e i n f o

Keywords:
Mesh improvement
Mesh quality
Edge flipping
Mesh smoothing
Moving mesh
Radial basis functions

a b s t r a c t

Given a tetrahedral mesh and objective functionals measuring the mesh quality which take into account
the shape, size, and orientation of the mesh elements, our aim is to improve the mesh quality as much as
possible. In this paper, we combine the moving mesh smoothing, based on the integration of an ordinary
differential equation coming from a given functional, with the lazy flip technique, a reversible edge
removal algorithm to modify the mesh connectivity. Moreover, we utilize radial basis function (RBF)
surface reconstruction to improve tetrahedral meshes with curved boundary surfaces. Numerical tests
show that the combination of these techniques into a mesh improvement framework achieves results
which are comparable and even better than the previously reported ones.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The keymesh improvement operations considered in this work
are smoothing, which moves the mesh vertices, flipping, which
changes themesh topologywithoutmoving themesh vertices, and
a smooth boundary reconstruction. Previous work shows that the
combination of smoothing and flipping achieves better results than
if applied individually [1,2]. In this paper, we combine the recently
developed flipping and smoothing methods into one mesh im-
provement scheme and apply them in combination with a smooth
boundary reconstruction via radial basis functions.

Mesh smoothing improves the mesh quality by improving
vertex locations, typically through Laplacian smoothing or
some optimization-based algorithm. Most commonly used mesh
smoothingmethods are Laplacian smoothing and its variants [3,4],
where a vertex is moved to the geometric center of its neigh-
boring vertices. While economic, easy to implement, and often
effective, Laplacian smoothing guarantees neither a mesh quality
improvement nor mesh validity. Alternatives are optimization-
based methods that are effective with respect to certain mesh
quality measures such as the ratio of the area to the sum of the
squared edge lengths [5], the ratio of the volume to a power of the
sumof the squared face areas [6], the condition number of the Jaco-
bian matrix of the affine mapping between the reference element
and physical elements [7], or various other measures [1,8–10].

✩ This special issue was edited by Scott Canann, Steven J. Owen & Hang Si.

* Corresponding author.
E-mail addresses: franco.dassi@unimib.it (F. Dassi), kamenski@wias-berlin.de

(L. Kamenski), farrell@wias-berlin.de (P. Farrell), si@wias-berlin.de (H. Si).

Most of the optimization-based methods are local and sequential,
combining Gauss–Seidel-type iterations with location optimiza-
tion problems over each patch. There is also a parallel algorithm
that solves a sequence of independent subproblems [11].

In our scheme, we employ the moving mesh PDE (MMPDE)
method, defined as the gradient flow equation of a meshing func-
tional (an objective functional in the context of optimization) to
move the mesh continuously in time. Such a functional is typically
based on error estimation or physical and geometric considera-
tions. Here, we consider a functional based on the equidistribution
and alignment conditions [12] and employ the recently developed
direct geometric discretization [13] of the underlying meshing
functional on simplicial meshes. Compared to the aforementioned
mesh smoothing methods, the considered method has several
advantages: it can be easily parallelized, it is based on a continuous
functional for which the existence of minimizers is known, the
functional controlling the mesh shape and size has a clear geomet-
ric meaning, and the nodal mesh velocities are given by a simple
analytical matrix form. Moreover, the smoothed mesh will stay
valid if it was valid initially [14].

Flipping is the most efficient way to locally improve the
mesh quality and it has been extensively addressed in the litera-
ture [15,1,16,2]. In the simplest case, the basic flip operations, such
as 2-to-3, 3-to-2, and 4-to-4 flips, are applied as long as the mesh
quality can be improved. Themore effectiveway is to combine sev-
eral basic flip operations into one edge removal operation, which
extends the 3-to-2 and 4-to-4 flips. This operation removes the
common edge of n ≥ 3 adjacent tetrahedra by replacing themwith
m = 2n − 4 new tetrahedra (the so-called n-to-m flip). There are
at most Cn−2 possible variants to remove an edge by a n-to-m flip,

https://doi.org/10.1016/j.cad.2017.11.010
0010-4485/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2017.11.010
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:franco.dassi@unimib.it
mailto:kamenski@wias-berlin.de
mailto:farrell@wias-berlin.de
mailto:si@wias-berlin.de
https://doi.org/10.1016/j.cad.2017.11.010

Please cite this article in press as: Dassi F., et al. Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction.
Computer-Aided Design (2017), https://doi.org/10.1016/j.cad.2017.11.010.

2 F. Dassi et al. / Computer-Aided Design () –

where Cn =
(2n)!

(n+1)! n! is the Catalan number. If n is small (e.g., n < 7),
one can enumerate all possible cases, compute the mesh quality
for each case, and then pick the optimal one. Another way is
to use dynamic programming to find the optimal configuration.
However, the number of cases increases exponentially and finding
the optimal solution with brute force is very time-consuming.

In this paper, we propose the so-called lazy searching flips. The
key idea is to automatically explore sequences of flips to remove a
given edge in the mesh. If a flip sequence leads to a configuration
which does not improve the mesh quality, the algorithm reverses
this sequence and explores another one (see Section 3 and Figs. 2a
to 2c). Once an improvement is found, the algorithms stops the
search and returns without exploring the remaining possibilities.

When considering more arbitrary meshes (which may not be
piecewise planar), we need to make sure that new nodes are
added in a consistent way. To achieve this we use RBF surface
reconstruction as introduced in [17]. Radial basis functions are a
very useful tool in the context of higher-dimensional interpolation
as they dispense with the expensive generation of a mesh [18–20].
Here, we will employ them to approximate the underlying con-
tinuous surface so that we can project nodes onto it as proposed
in [21,22]. This problem turns out to be very challenging formeshes
with arbitrary boundary. Hence, we begin with a relatively simple
mesh. Formore complicated exampleswe first refine the boundary
by using the RBF reconstruction and projection method and then
keep the boundary nodes fixed while interior nodes may move.

In this paper, we provide a detailed numerical study of a com-
bination of the MMPDE smoothing with the lazy searching flips
and RBF surface reconstruction. More specifically, we compare the
results of the whole algorithm with Stellar [2], CGAL [23] and
mmg3d [24]. We also compare the lazy searching flips and the
MMPDE smoothing with the flipping and smoothing procedures
provided by Stellar.

2. The moving mesh PDE smoothing scheme

The key idea of this smoothing scheme is tomove themesh ver-
tices via amovingmesh equation,which is formulated as the gradi-
ent system of an energy functional (the MMPDE approach). Origi-
nally, themethodwas developed in the continuous setting [25,26].
In this paper, we use its discrete form [13,14,27], for which the
mesh vertex velocities are expressed in a simple, analytical matrix
form, which makes the implementation more straightforward to
parallelize.

2.1. Moving mesh smoothing

Consider a polygonal (polyhedral) domain Ω ⊂ Rd with d ≥ 1.
Let Th denote the simplicial mesh as well as #Nh and #Th the
numbers of its vertices and elements, respectively. Let K be a
generic mesh element and K̂ the reference element taken as a
regular simplex with volume |K̂ | = 1/#Th. Further, let F ′

K be the
Jacobian matrix of the affine mapping FK : K̂ → K from the
reference element K̂ to amesh elementK . For notational simplicity,
we denote the inverse of the Jacobian by JK , i.e., JK := (F ′

K)
−1 (see

Fig. 1).
Then, the mesh Th is uniform if and only if

|K | =
|Ω|

#Th
and

1
d
tr

(
JTKJK

)
= det

(
JTKJK

) 1
d ∀K ∈ Th. (1)

The first condition requires all elements to have the same size and
the second requires all elements to be shaped similarly to K̂ (these
conditions are the simplified versions of the equidistribution and
alignment conditions [28,26]).

Fig. 1. Reference element K̂ , mesh element K , and the corresponding mappings FK
and F−1

K .

The corresponding energy functional for which the minimiza-
tion will result in a mesh satisfying Eq. (1) as closely as possible
is

Ih =

∑
K

|K | G (JK , det JK) (2)

with

G(J, det J) = θ
(
tr

(
JJT

)) dp
2 + (1 − 2θ) d

dp
2 (det J)p, (3)

where θ ∈ (0, 0.5] and p > 1 are dimensionless parameters
(in Section 6, we use θ = 1/3 and p = 3/2). This is a specific
choice and other meshing functionals are possible. The interested
reader is referred to [29] for a numerical comparison of meshing
functionals for variational mesh adaptation.

In Eq. (2), Ih is a Riemann sum of a continuous functional
for variational mesh adaptation based on equidistribution and
alignment [12] and depends on the vertex coordinates xi, i =

1, . . . ,#Nh. The corresponding vertex velocities vi for the mesh
movement are defined as

vi :=
dxi
dt

= −

(
∂ Ih
∂xi

)T

, i = 1, . . . ,#Nh, (4)

where the derivatives dxi
dt are considered to be row vectors.

2.2. Vertex velocities and the mesh movement

The vertex velocities vi can be computed analytically
[13, Eqs (39) to (41)] using scalar-by-matrix differentiation
[13, Sect. 3.2]. Denote the vertices of K and K̂ by xKj and x̂j, j =

0, . . . , d, and define the element edge matrices as

EK = [xK1 − xK0 , . . . , xKd − xK0],

Ê = [x̂1 − x̂0, . . . , x̂d − x̂0].

Note, that ÊE−1
K = JK . Then, the local mesh velocities are given

element-wise [13, Eqs (39) and (41)] by⎡⎢⎣(vK
1)

T

...

(vK
d)

T

⎤⎥⎦ = −GKE−1
K + E−1

K
∂GK

∂J
ÊE−1

K +
∂GK

∂ det J
det(Ê)
det(EK)

E−1
K , (5)

(vK
0)

T
= −

d∑
j=1

(vK
j)

T ,

where GK = G(JK , det JK) and

∂GK

∂J
=

∂G
∂J

(JK) = dpθ
(
tr(JKJTK)

) dp
2 −1

JTK ,

∂GK

∂ det J
=

∂G
∂ det J

(det JK) = p(1 − 2θ)d
dp
2 (det JK)p−1

are the derivatives of G with respect to its first and second argu-
ment [13, Example 3.2] evaluated at J = JK and det(J) = det JK .

Download English Version:

https://daneshyari.com/en/article/6876374

Download Persian Version:

https://daneshyari.com/article/6876374

Daneshyari.com

https://daneshyari.com/en/article/6876374
https://daneshyari.com/article/6876374
https://daneshyari.com

