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a b s t r a c t

This paper presents a fast and robust mesh generation procedure that is able to generate meshes of
the earth system (ocean and continent) in matters of seconds. Our algorithm takes as input a standard
shape-file i.e. geospatial vector data format for geographic information system (GIS) software. The input
is initially coarsened in order to automatically remove unwanted channels that are under a desired
resolution. A valid non-overlapping 1Dmesh is then created on the sphere using the Euclidean coordinates
system x, y, z. A modified Delaunay kernel is then proposed that enables generation of meshes on the
sphere in a straightforward manner without parametrization. One of the main difficulty in dealing with
geographical data is the over-sampled nature of coastline representations. We propose here an algorithm
that automatically unrefines coastline data. Small features are automatically removed while always
keeping a valid (non-overlapping) geometrical representation of the domain. A Delaunay refinement
procedure is subsequently applied to the domain. The refinement scheme is also multi-threaded at a fine
grain level, allowing to generate about a million points per second on 8 threads. Examples of meshes of
the Baltic sea as well as of the global ocean are presented.

© 2018 Published by Elsevier Ltd.

1. Introduction

Traditional ocean models are based on finite differences
schemes on Cartesian grids [1]. It is only recently that unstructured
meshes have been used in ocean modeling [2–4], essentially using
finite elements. One of the advantages of unstructured grids is their
ability to conform to coastlines.

As unstructured grid ocean models began to appear, mesh gen-
eration algorithms were either specifically developed or simply
adapted from classical engineering tools. [5] uses the mesh gen-
eration tools of [6] on several sub-domains to obtain a mesh of
the world ocean, aiming at global scale tidal modeling. Further, [7]
uses a higher resolution version of the same kind of meshes with
the state of the art FES2004 tidal model. [8] gives two algorithms
to generate meshes of coastal domains, and uses them to model
tides in the Gulf of Mexico. [9] shows high-resolution meshes
of the Great Barrier Reef (Australia). At the global scale, [10,11]
developed specific algorithms to obtainmeshes of theworld ocean.
More recently, we have developed a proper CAD model of ocean
geometries [12]. This model relies on the stereographic projection
of the sphere which is conformal i.e. it conserves angles. This
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approach has been quite successful up to now:we and other teams
have applied it to numerous coastal domains [13,14].

Our CAD approach has two major drawbacks. First, at least two
maps are required to cover the whole sphere, making it awkward
for atmosphere simulations for example. Then, using splines is
maybe not the most robust/natural manner for describing coast-
lines: geographical information systems provide description of
coastlines as series of non-overlapping closed polygons and using
splines may lead to intersections.

Here, a new approach that addresses both issues is proposed. It
has essentially the following features:

• It starts from the finest available representation of the coast-
lines that iswatertight i.e. a series of polylines on the sphere.

• The fine representation is subsequently coarsened in order
to remove all features larger than a desired size h that
depends on the scales that are aimed to be modeled.

Amodified Delaunay kernel is first presented that allows gener-
ation of meshes on the unit sphere. Based on our recent paper [15],
amulti-threaded version of this new kernel has been implemented
that allows triangulation of over one million points per second on
the sphere on a standard quad-core laptop. This newapproachdoes
not rely on any parametrization and has all the proof structure of
the usual Delaunay kernel (proof of termination, angle-optimality,
polynomial complexity).
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In this new approach, the most refined representation of coast-
lines available in the geographical system is used as input. A con-
strained Delaunay mesh of the whole data set is created using the
new Delaunay procedure. This first mesh allows to automatically
and robustly removing from the domain any water channel that
has a width that is smaller than a given threshold (this threshold
being possibly variable in space). This step leads to a coarsened
version of the boundary mesh where locally small features have
been removed, producing a valid (non-overlapping) boundary de-
scription of the domain. Finally, a multi-threaded version of the
edge-based Delaunay refinement procedure of [16] has been used
to saturate the domain with points and triangles.

The developments that are presented here have been released
as a self consistent open source code that can be used as a stan-
dalone program or that can be plugged in other software’s such as
Gmsh [17] or QGIS [18].

2. Delaunay triangulation on the sphere

Here we consider the unit 3D sphere S centered at the origin
o(0, 0, 0): S = {x(x, y, z) ∈ R3

| x2 + y2 + z2 = 1}. Any section of
a sphere by a plane is a circle. We distinguish great circles that are
sections of a sphere that diameter is equal to the diameter of the
sphere and small circles that are any other section.

Consider two points p1 and p2 on the sphere. Geodesics are the
shortest path between points on the sphere. It is well known that
geodesics of the sphere are segments of a great circle. The geodesic
distance between p1 and p2 is the length of the great circular arc
joining p1 and p2. We call it d(p1, p2).

A spherical triangle T1(p1, p2, p3) (see Fig. 1) is a figure formed
on the surface of a sphere by three great circular arcs intersecting
pairwise in three vertices p1, p2 and p3. A spherical triangle is
sometimes called an Euler triangle. Spherical triangles have an ori-
entation that is computed as the sign of the volume ∥p1, p2, p3, o∥

of tetrahedron t(p1, p2, p3, o) is positive, with o the center of S.
The circumcircle CT1 of the spherical triangle T1 is the small

circle that is formed by the section of S by the plane defined by
points p1, p2 and p3 (see Fig. 1). The circumcircle CT1 divides the
sphere into two parts. Consider a point p of S:

• p is inside CT1 if ∥p1, p2, p3, p∥ < 0.
• p is outside CT1 if ∥p1, p2, p3, p∥ > 0.
• p is on CT1 if ∥p1, p2, p3, p∥ = 0.

There are exactly two antipodal points that are equidistant to
p1, p2 and p3. We define the spherical circumcenter of T1 as the
point cT1 that is equidistant to p1, p2 and p3:

d(p1, cT1 ) = d(p2, cT1 ) = d(p3, cT1 )

and that is inside CT1 . This corresponds to one of the two antipodal
points that is the closest to p1, p2 and p3.

Consider a point set P = {p1, . . . , pn} of n points of S. A
triangulation T (P) of P is a set of 2n − 4 non overlapping spherical
triangles

T (P) = {T1, T2, . . . , T2n−4}

that exactly covers S with all points of P being among the vertices
of the triangulation.

A spherical triangle Tj is Delaunay if its circumcircle is empty
i.e. if no point pi of P lies inside Tj. The Delaunay triangulation
DT(P) is such that every triangle Tj of DT (P) is Delaunay. This con-
struction is an actual Delaunay triangulation [19,20]. An interesting

interpretation of this kernel starts with the 3D orientation predi-
cate that consists in computing the sign of the volume of tetrahe-
dron formed by points pj(xi, yi, zi), j = 1, . . . , 4:

sign

⏐⏐⏐⏐⏐⏐⏐
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

⏐⏐⏐⏐⏐⏐⏐ (1)

The 2D ‘in-circle’ predicate that tells if point p4 belongs to the
circum-circle of triangle formed by points p1, p2, and p3 can be
written as

sign

⏐⏐⏐⏐⏐⏐⏐⏐
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4

x21 + y21 x22 + y22 x23 + y23 x24 + y24

⏐⏐⏐⏐⏐⏐⏐⏐ (2)

Predicate (2) has a form that is close to the one of (1). This is an
expression of the standard link between 3D convex hulls and 2D
Delaunay triangulations: assume a 2D triangulation and lift it to
the paraboloid z = x2 + y2. Then a 2D triangle is Delaunay if
it belongs to the convex hull of the lifted triangulation. In other
words, a point p(x, y) belongs to the circumcircle of a triangle
t(p1, p2, p3) if its lifting p′(x, y, x2 + y2) on the paraboloid is below
the plane defined by the lifted triangle t ′(p′

1, p
′

2, p
′

3). This is verified
by computing the sign of the volume of tetrahedron with vertices
p′

1, p
′

2, p
′

3, p
′

4 using Eq. (1). In the case of a triangulation on a unit
sphere, predicate (1) becomes

sign

⏐⏐⏐⏐⏐⏐⏐⏐
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

⏐⏐⏐⏐⏐⏐⏐⏐ =

sign

⏐⏐⏐⏐⏐⏐⏐⏐⏐
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4√

1 − x21 − y21

√
1 − x22 − y22

√
1 − x23 − y23

√
1 − x24 − y24

⏐⏐⏐⏐⏐⏐⏐⏐⏐ .
(3)

The lifting here is on the sphere and not on the paraboloid and the
construction that is proposed is a Delaunay triangulation.

3. A parallel Delaunay kernel

A triangulation T (P) of P is a set of non overlapping triangles
that exactly covers the convex hull Ω(P) with all points of P being
among the vertices of the triangulation.

Delaunay triangulations are popular in themeshing community
because fast algorithms exist that allows generation of DT(P) in
O(n log(n)) complexity.

Let DTk be the Delaunay triangulation of a point set Pk = {p1,

. . . , pk} ⊂ Rd. The Delaunay kernel is a procedure that allows
the incremental insertion of a given point pk+1 ∈ Ω(Pk) into DTk
and to build the Delaunay triangulation DTk+1 of Pk+1 = {p1, . . . ,

pk, pk+1}. The Delaunay kernel can be written in the following
abstract manner:

DTk+1 = DTk − C(DTk, pk+1) + B(DTk, pk+1), (4)

where the Delaunay cavity C(DTk, pk+1) is the set of all triangles
whose circumcircles contain the new point pk+1 (see Fig. 2; the
triangles of the cavity cannot belong to DTk+1) and the Delaunay
ball B(DTk, pk+1) is a set of triangles that fill the polyhedral hole
that has been left empty while removing the Delaunay cavity
C(DTk, pk+1) from DTk.
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