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a b s t r a c t

We aim to tackle the challenge of generating unstructured high-order meshes of complex three-
dimensional bodies, which remains a significant bottleneck in the wider adoption of high-order methods.
In particular we show that by adopting a variational approach to the generation process, many of the
current popular high-order generation methods can be encompassed under a single unifying framework.
This allows us to compare the effectiveness of these methods and to assess the quality of the meshes
they produce in a systematic fashion. We present a detailed overview of the theory and formulation of
the variational framework, and we highlight how such formulation can be effectively exploited to yield a
highly-efficient parallel implementation. The effectiveness of this approach is examined by considering
a number of two- and three-dimensional examples, where we show how the proposed approach can be
used for both mesh quality optimisation and untangling of invalid high-order meshes.

© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

High-order methods are rapidly increasing in popularity due
to their favourable numerical characteristics and ability to more
effectively use modern computing hardware than traditional low-
order methods. There has beenmuch development of the underly-
ing solvers, which give the ability to simulate fluid flows, acoustic
phenomena and many other physical processes. However, these
solvers ultimately rely on the partitioning of a domain into ele-
ments which, at high polynomial orders, must be: coarse in order
to take advantage of the high-order nature of the method; curved
to align with the underlying geometry; and valid, so that they do
not self-intersect. The lack of development in this area has meant
that this is a significant bottleneck in the more widespread use
of these methods [1,2]. This is particularly applicable to industrial
cases, where complex three-dimensional geometries representing
(for example) cars and planes are clearly of significant interest. For
these methods to become more popular outside of academia, this
bottleneck clearly needs to be addressed.

Research in this area has mostly centred around a posteriori
approaches, whereby a coarse linear mesh is deformed to accom-
modate the curvature at the boundary, and is the focus of this
study. The challenge in this approach is to determine a method
through which this curvature can be incorporated into the interior
of the domain. Without this, the mesh is at best of a low qual-
ity, and at worst, will self-intersect, rendering it unsuitable for
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solver-based calculations. Existing work in a posteriori generation
has broadly centred around two lines of investigation. The first
of these focuses around the concept of solid body deformation,
whereby the mesh is treated as a solid body which is deformed
to incorporate curvature at the boundary. The work in this theme
has focused around determining which model is ‘best’, either in
terms of optimal quality or computational efficiency. Somemodels
investigated include linear elasticity by Xie et al. [3] and Hartmann
& Leicht [4], non-linear hyperelasticity by Persson & Peraire [5] and
more recently by Poya et al. [6], thermo-elasticity by some of the
authors of this work [7] and theWinslow equations by Fortunato &
Persson [8]. The second theme follows a different route, whereby
themesh is equippedwith an associated functional that denotes its
energy. A non-linear optimisation problem is then solved in order
to minimise this functional and yield a valid mesh. Again, most
studies in this area have focused around this choice of functional,
which include scaled Jacobian distortion metrics by Dey et al. [9],
spring analogies for surface deformation by Sherwin & Peiró [10],
unconstrained optimisation of the Jacobian by Toulorge et al. [11]
and anumber of articles byRoca and collaborators based on a shape
distortion metric, e.g. [12–14].

However, what has so far remained unexplored in this area is
the connections between these two themes. In the linear mesh
generation community, for example in work by Garanzha [15] and
Huang & Russell [16], it is known that through the calculus of
variations, the elliptic partial differential equations defining these
elasticity models can be recast into the minimisation of a energy
functional, which takes as its arguments the mesh displacement
and its derivatives. However, the use of this approach in high-order
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mesh generation has remainedmostly unnoticed, asides from brief
remarks in work by Sastry et al. [17].

The purpose of the present study is to examine the connections
between these two existing mesh generation themes, by both
recasting solid body models in a variational setting and examining
other functionals already noted above in the literature. We will
show that this approach has several benefits. It first allows us to
examine each of the models in a common setting and investigate
the relative benefits of each model in turn. Additionally, from a
standpoint of robustness, the use of an energy functional that is
convex or polyconvex, as investigated by Huang & Russell [16] and
Garanzha [18], gives mathematical guarantees of a minimum that
may be found using a numerical optimisation procedure. Finally,
we note that early work in the 1970s by Felippa [19], who inves-
tigated direct energy minimisation methods for mesh generation,
concluded that this method is promising but computational power
was, at the time, a significant limiting factor in the success of this
approach. In the following sections, we will show that modern
computing hardware, combined with a suitable choice of numeri-
cal optimisation to exploit the denser structure that arises through
a high-order discretisation, allows us to overcome this problem.
The results we present here highlight that the variational setting
allows us to construct a highly efficient and robust parallel frame-
work for high-ordermesh generation, permitting the generation of
very complex three-dimensional meshes in the order of minutes.

Finally, we note that the groundwork for this study has been
outlined in an earlier proceeding [20]. In this article we signifi-
cantly expand the scope of the work by investigating several addi-
tional contributions. These are: the incorporation of optimisation
procedures based on analytic gradients andHessian regularisation;
the implementation of an improved regularisationmethod used to
untangle meshes and a detailed discussion of its properties; the
extension of the method to permit the mesh nodes connected to
the CAD geometry to slide along the curves and across the surfaces
on the boundary; and, finally, the inclusion of a wider range of
examples, including hybrid prismatic–tetrahedral boundary layer
meshes and very high-order quadrilateral meshes.

The paper is structured as follows. Section 2 outlines the formu-
lation of the problem in terms of a solid mechanics analogy. The
four energy functionals that we will investigate in this work are
introduced in Section 2.1, which overlap with a large number of
studies based around high-order mesh generation, and we discuss
a regularisation strategy to untangle invalid meshes in Section 2.2.
Section 3 describes details of the practical implementation needed
in this variational setting. This includes the discretisation and non-
linear optimisation in Sections 3.2 and 3.3, parallelisation strate-
gies in Section 3.4 and allowing surface elements to slide across
the CAD geometry in Section 3.5. Section 4 provides a brief analysis
of the behaviour of the functional, guiding the choice of some
numerical options. Section 5 then examines the application of this
method to a number of two- and three-dimensional problems,
describing the meshes obtained by each method, the number of
iterations and computational time needed for convergence. We
finalise the paper in Section 6 with a brief overview and outlook
to future work and improvements.

2. Background and formulation

We begin with a brief mathematical overview of the setup
of the variational formulation. The ultimate goal is to define an
energy functional that will be optimised in order to produce a
valid high-order mesh. We therefore first require a coarse mesh
ΩI =

⋃Nel
e=1Ω

e
I of Nel straight-sided elements. The generation of

this coarse grid is beyond the scope of this article but is discussed
further in, e.g. Ref. [21]. We equip each element of ΩI with a high-
order polynomial finite element basis, based on standard Lagrange

Fig. 1. Notation for mappings used throughout the paper: a triangular element is
used for illustration purposes, but the notation is general and applicable to other
element types. On the left we map a standard (reference) element Ωst onto the
straight-sided element Ωe

I through the mapping φI : Ωst → Ωe
I and onto the

curvilinear element φe
: Ωst → Ωe . The deformation mapping φ : Ωe

I → Ωe

is then defined through the composition φ = φe
M ◦ φ−1I .

interpolant basis functions. This gives an initial representation of
the domain and serves as the initial configuration for the vari-
ational setup. In common with previous approaches [11,14], we
define themapping between a straight-sidedmeshΩI and a curvi-
linear mesh Ω , which we subsequently denote by φ : ΩI → Ω .
We refer to each element Ωe

I as the ‘ideal’ element as it represents
the best quality attainable without the introduction of curvature.

The mapping φ is constructed by considering each element
Ωe

I separately. We refer to the diagram in Fig. 1, wherein we
consider a triangular element and denote the coordinates inside
each element as ξ ∈ Ωst, x ∈ Ωe and y ∈ Ωe

I . These mappings
are constructed in an isoparametric fashion, so that the nodes ξn

that define the Lagrange basis functions on the standard element
map to yn under φI and xn under φM . We note that other element
types, such as quadrilaterals in two dimensions and tetrahedra,
triangular prisms, pyramids and hexahedra in three dimensions,
may use exactly the same definitions as above.

The energy functional is then defined as the integral

E(∇φ) =
∫

ΩI

W (∇φ) dy, (1)

where W depends on the deformation gradient tensor

∇φ(y) =
∂φ

∂y
; [∇φ(y)]ij =

∂φi

∂yj
,

and its determinant J = det∇φ, which we hereafter refer to as the
Jacobian. In the following section we describe the different forms
of the energy that we investigate in this article.

2.1. Forms of the energy functional

This section outlines a key contribution of this work, where we
show that many of the existing curvilinear mesh generationmeth-
ods can be unified in a variational setting through the definition
of an energy functional. More importantly, a judicious choice of an
energy functional that satisfies the convexity requirements of Ball’s
existence theory [22] guarantees the existence of a minimiser. We
therefore seek to employ energy functionals that are polyconvex. A
discussion of the properties of such functionals and how to verify
them, together with examples of their use in mesh generation can
be consulted in section 6.2 of the book by Huang and Russell [16].
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