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a b s t r a c t

We present a direct and local construction for polynomial G1 spline surfaces with a piece-wise
Pythagorean normal (PN) vector field. A key advantage of our method is that the constructed splines
possess exact piece-wise rational offsets without any need for reparametrisations, which in turn means
that no trimming procedure in the parameter domain is necessary. The spline surface consists of locally
constructed triangular PN macro-elements, each of which is completely local and capable of matching
boundary data consisting of three points with associated normal vectors. The collection of the macro-
elements forms a G1-continuous spline surface. The designed method is demonstrated on several exam-
ples.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Curves and surfaces satisfying a certain Pythagorean property
of their tangent or normal vector fields have become an intensive
research topic in recent years. Investigating their properties and
applications significantly influenced research in related theoretical
as well as applied disciplines, and nowadays one can find a large
number of papers and other contributions related to this interest-
ing concept [1,2].

This paper is devoted to surfaces in 3-space whose normal
vectors satisfy the Pythagorean property, the so-called PN surfaces.
Rational PN surfaces were defined in [3] as a surface counterpart of
Pythagorean hodograph (PH) curves [4]. It holds that PH curves in
the plane and PN surfaces in 3-space share some common prop-
erties, for instance they both yield rational offsets. This property is
highly appreciated in technical practice since for general free-form
NURBS curves and surfaces an exact (piece-wise) rational paramet-
ric representation of their offsets is not available, and approximate
techniques for computing and interrogating their offsets are thus
needed.

Nonetheless, when considering only the rationality of offsets
as a main feature of PH curves or PN surfaces then other useful
properties might be overlooked. In the curve case, another very
important practical application is based on the fact that the para-
metric speed (or the length element), and thus also the arc length,
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of polynomial PH curves is also polynomial. This is important, for
instance, when formulating efficient real time interpolator algo-
rithms for CNCmachines. The area element and the surface area are
then the analogues in the surface case: they are both polynomial
for polynomial PN surfaces. This feature is useful for instance in
CNC painting. This shows the prominent role of polynomial PH
curves and PN surfaces within their rational families.

Despite the fact that both PH curves and PN surfaces belong
among hypersurfaces with a Pythagorean property, one can find
important differences between these two classes. For instance, PH
curveswere first introduced as planar polynomial shapes, including
a compact formula for their description based on Pythagorean
polynomial triples, whereas a description of rational PN surfaces
using their duals was first revealed in [3]. This has clear conse-
quences for formulating interpolation/approximation algorithms
with these shapes. There exist many Hermite interpolation results
for polynomial PH curves [1,2], but there are not many algorithms
for PN surface interpolation. Moreover, only select few are direct
PN surface algorithms and the majority of those use rational PN
surfaces. A direct PN algorithm is a construction of the object
together with its PN parametrisation (i.e., no reparametrisation is
required).

In contrast, results of indirect PN algorithms are surfaces which
become PNonly after a suitable rational reparametrisation, i.e., one
does not obtain a polynomial PN surface but a rational one. For
instance, in [5] a method for the construction of exact offsets of
quadratic triangular Bézier surface patches was designed. These
patches are in fact PN surfaces but their PN parametrisations were
obtained only via a certain reparametrisation. A nice approach also
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based on reparametrisations was formulated in [6], using surfaces
with linear normals [7].

As for direct methods, a scheme with triangular patches on
parabolic Dupin cyclideswas designed in [8], interpolation of trian-
gular data using the support function was studied in [9], and using
bicubic Coons patches in the isotropic model for the construction
of smooth PN surfaces was investigated in [10].

The key advantage of direct PN interpolation techniques is
obvious: as no reparametrisation is required, one does not need
to apply trimming in parameter space. Nevertheless, as in the case
of indirect approaches, all above-mentioned direct methods yield
rational PN surfaces, and thus cannot be used when polynomial
parametrisations are required. Only recently, the firstmethod solv-
ing the Hermite problem directly, and thus yielding polynomial PN
parametrisations, was formulated in [11]. However, the method is
global and requires solving a global linear system; the locality of
e.g. the (rational) method presented in [10] is lost.

In the present paper, based on reformulating the approaches
taken in [6] and [11], we solve the challenging problem of design-
ing a PN Hermite interpolation method which

• is local, i.e., a PN macro-element is computed only from
vertex and normal data of one triangle at a time;

• is direct, i.e., it yields polynomial PN macro-elements with
no need for reparametrisations;

• yields globally G1-continuous PN spline surfaces.

We describe our algorithm in Section 3, present examples in
Section 4, and conclude the paper in Section 5. But before all
that, we recall some preliminary notions and set notation in the
following section.

2. Preliminaries

In this section we recall some fundamental facts about surfaces
with rational offsets and rational curves on them.

2.1. PN surfaces and PSN curves

For the sake of completeness, we first recall the definition of PN
surfaces.

Definition 2.1. Let X be a rational surface for which there exists a
parametrisation x(u, v) : R2

→ R3 satisfying the condition

∥xu × xv∥
2

= σ 2, (1)

where ∥ · ∥ denotes the Euclidean norm, σ (u, v) is a rational
function, and xu and xv are partial derivatives of x with respect to
u and v, respectively. Then X is called a surface with a Pythagorean
normal vector field (or a PN surface) and condition (1) is referred to
as PN condition or PN property. A parametrisation satisfying the PN
condition is called a PN parametrisation. If every parametrisation of
X is PN, we call X a proper PN surface. If there exist both PN and
non-PN parametrisations of X then we speak about a non-proper
PN surface.

A distinguishing property of PN surfaces is that they admit two-
sided rational δ-offset surfaces

xδ = x ± δ
N

∥N∥
= x ± δ

xu × xv

σ
, (2)

where x(u, v) is a PN parametrisation of X and N(u, v) is a normal
vector (at regular points of X ).

Moreover, as it holds⏐⏐⏐⏐xu · xu xu · xv

xu · xv xv · xv

⏐⏐⏐⏐ = EG − F 2
= ∥xu × xv∥

2 (3)

with E, F , G the coefficients of the first fundamental form, and the
squared area element has the form

dA2
= (EG − F 2) du2dv2, (4)

then PN surfaces are simultaneously surfaces with a rational area
element in R3. In addition, all polynomial PN surfaces (with poly-
nomial area element) possess piece-wise polynomial surface area

A(u, v) =

∫∫ √
EG − F 2 dudv =

∫∫
|σ | dudv.

Let X be a rational surface and C ⊂ X be a rational curve on it
given by the parametrisation c(t) = x(u(t), v(t)) for some rational
functions u(t) an v(t). The normal vector field of the surface along
C is expressed as

N(u(t), v(t)) = xu(u(t), v(t)) × xv(u(t), v(t)). (5)

The δ-offset of the given surface along its curve is then defined by

x(u(t), v(t)) ± δ
N(u(t), v(t))

∥N(u(t), v(t))∥
. (6)

Of course, the curve (6) is not rational, in general. Indeed, the for-
mula gives a rational mapping if and only if there exists a rational
function σ (t) such that the following (Pythagorean) condition is
satisfied:

[xu(u(t), v(t)) × xv(u(t), v(t))]2 = σ 2(u(t), v(t)). (7)

Then we say that the parametrisation x(u(t), v(t)) satisfying (7)
admits Pythagorean surface normals with respect toX , and is shortly
called a PSN parametrisation. A curve C ⊂ X admitting a PSN
parametrisation is called a PSN curve; see [12].

The PSN condition (7) can be satisfied for some curves despite
the fact that the PN condition (1) does not hold for the given surface
parametrisation. On the other hand, when the parametrisation
x(u, v) of the surfaceX is PN, then any parametrisation x(u(t), v(t))
of the curve C ⊂ X is PSN. Nevertheless, we emphasise that not
every rational curve on a PN surface is PSN; this can happen when
the surface is a non-proper PN surface.

2.2. Polynomial PN triangles

Our goal is to construct a smooth piece-wise polynomial PN
surface interpolating given G1 data, i.e., points and normals. We
assume that the input data are organised in a triangular manifold
mesh (with or without boundary). Before proceeding, we first
reformulate the expressions involved in the PN property for Bézier
triangular patches.

With i = (i, j, k), |i| = i+ j+k and i, j, k ≥ 0, a triangular Bézier
surface patch of degree n is defined as

x(u) =

∑
|i|=n

n!
i!j!k!

xiuivjwk (8)

with barycentric coordinates u = (u, v, w), u, v, w ≥ 0, u + v +

w = 1, and control points xi ∈ R3; see [13]. The domain of the
patch is a triangle △ ⊂ R2.

The first directional derivatives with directions parallel to the
edges of △ are

xu(u) = n
∑

|i|=n−1

∆uxiuivjwk,

xv(u) = n
∑

|i|=n−1

∆vxiuivjwk,

xw(u) = n
∑

|i|=n−1

∆wxiuivjwk,

(9)
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