
Computer-Aided Design 102 (2018) 61–71

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Average and variance of a quasi-parallel family of surfaces
Mukul Sati *, Jarek Rossignac
School of Interactive Computing, Georgia Tech, USA

a r t i c l e i n f o

Keywords:
Surface averaging
Projection iteration
Visualization
Solid tolerancing

a b s t r a c t

We provide theoretical foundations and practical computational tools for the statistical analysis of the
local disparity between a family of situated surfaces. We do not mean statistics on discrete measures,
such as pairwise Hausdorff distance, of these surfaces, but instead local, shape-variability statistics for
all points on these surfaces in a manner that generalizes the mean and variance of numbers. Given a
family F of n input surfaces Bi, we wish to compute a surface, B, that is the average of the surfaces in
F and to associate, with each point p of B, a variance value, v(p), which is the average of its squared
distances to the input surfaces and hence measures the local disparity between the surfaces of the
family. We choose Bk as any one of the input surfaces in F. We define B as union of all points p, each
resulting from ‘snapping’ a different point pk of Bk. Snapping followed by closest projections may be used
to establish pointwise correspondence between all input surfaces. When this correspondence defines a
homeomorphism between B and each Bi, and hence between each pair of input surfaces, we say that F
is a quasi-parallel family of surfaces and that B is their average. In such valid configurations, B exhibits
properties that one would expect from an average of surfaces and the resulting variance field over Bmay
be used for analysis, optimization, and visualization. A sufficient condition for this validity is to require
that each pair of surfaces in F be projection-homeomorphic.

In practice, we only snap the vertices of a triangulation Tk that approximates Bk. The snap produces a
triangulation T that approximates B. We obtain a triangulation Ti of an input surface Bi by projecting the
vertices of T onto it. We propose a practical, although partial validity test that compares T to each Ti.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In algorithms that operate on large data sets, a computed aver-
agemay serve as an abstraction (summary of a data set) to simplify
visualization and to accelerate queries. We focus on data sets that
comprise CAD models of a family of solids. Our goal is to provide
a useful definition of the solid that is the average of the input
solids. Furthermore, we wish to annotate its boundary by a field
that indicates local variability between the boundaries of the input
solids.

We expect that the proposed definition of the average of solids
may play a critical role in the analysis of the yield ofmanufacturing
processes, especially for CNC machined parts.

The executions of a manufacturing process plan produce parts
that are very similar, although not identical. Traditionally, part
inspection and manufacturing process control have been carried
out by comparing a selection ofmeasured ‘‘as-manufactured’’ solid
models to a nominal ‘‘as-designed’’ solid model in the context of
associated tolerances.
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However, owing to the significant benefits brought about, it
is an increasing trend in manufacturing to instead use an ex-
plicit ‘‘digital twin’’ [1] representation of the entire manufacturing
pipeline.

We propose a definition and a practical computation (1) of the
solid average of the ‘‘as-manufactured’’ models and (2) of a local
variability field over its surface. We further suggest that the aver-
age might be used as a more accurate statistical representation of
the output of themanufacturing pipeline, because it is independent
of the nominal model.

Our proposed approach will make it possible to assess sepa-
rately (1) the variability (uncertainty, random errors) of a man-
ufacturing process and (2) its compliance with a toleranced
‘‘as-designed’’ model (systematic error). Furthermore, the emer-
gence of open architectures (such as [2]) and of sensor-equipped
CNC machines make it conceivable to update the average ‘‘as-
manufactured’’ shape in near-realtime. Doing so, might, for ex-
ample, help to improve the manufacturing process by identifying
regions where the feed-rate of the cutting tool must be reduced
(Fig. 1).

To enable this vision, we first need a definition and effective
algorithms for the computation of the average of a family of shapes.
In this paper, we propose a simple construction called ‘Snap’ that
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Fig. 1. One of the ‘‘as-manufactured’’ input solids (left) and the average of the family
(right), color coded with the variance field. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. A 2D illustration: A family of three input curves (proxies for surfaces) and
the shaded gap between them (left). Their red average (center). Te variability shown
bymapping standard deviation to variable thickness along the average (right). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

operates on a family F of n surfaces, {Bi}, each being the smooth,
manifold boundary of a connected solid. Snap(Bk) considers one
such surface, Bk as the ‘seed’ surface (e.g., in Fig. 3, k = 3). It maps
each point, pk, of Bk to a point p= Snap(pk).

As a mapping applied to all points of Bk, the Snap construction
takes Bk to the point set B, which we call the ‘snap set’. For ‘quasi-
parallel’ configurations of inputs (for example, in which each pair
of surfaces is projection-homeomorphic), B is a smooth, manifold
surface. We call it the ‘average surface’, because it possesses prop-
erties that one would expect of the average of the input family. For
example, B contains all points that lie in each Bi. B is manifold and
parallel to the Bi surfaces in portions where the Bi’s are parallel to
each other (such as where they are each the offset by a constant
distance of one of them). In these regions, each point p of B is
the centroid of its closest projections {pi} onto the surfaces {Bi}.
Our construction is also similarity-invariant and symmetric (inde-
pendent of the order of the input surfaces). When F has only two
surfaces, our definition of B matches the definition of the medial
axis of the gap (Fig. 2) between them.

When does the Snap constructionwork? Sufficient and practically
computable conditions for projection-homeomorphism between
two surfaces are proposed in [3] and are based on comparing
their Hausdorff distance to their minimum feature sizes. Pairwise
projection-homeomorphism is sufficient, but not necessary for the
existence of a valid average for the family and for the construction,
by the algorithm proposed here, of a triangle mesh that approxi-
mates it. Thus, we use the term ‘quasi-parallel family of surfaces’
to describe the more general set of ‘valid configurations’ for which
our algorithm produces a valid average, regardless of whether the
family is pairwise projection-homeomorphic. However, we do not
mean to imply that a valid average cannot exist for configurations
for which it is not produced by our algorithm. This disparity is
linked with the sampling nature of the proposed implementation
and with the practical simplifications used for assessing validity
from an approximating triangulation.

When the input surface family is quasi-parallel, B is a variable
distance offset of Bk, and it establishes a homeomorphism between

each pair of surfaces of the input family. It can be represented
implicitly, storing a displacement field indicating the signed nor-
mal offset distance d by which point pk of Bk must be displaced
along its normal nk, so as to reach the corresponding point p
of B. Thus, the average surface is a valuable tool for signal and
geometry processing tasks on F, such as mapping or comparing
surface attributes (e.g., textures).

Note thatwe do not assume any given correspondence between
the situated input surfaces and that, in fact, the proposed solution
may be used to establish such correspondences.

When computing the central tendency of numbers, one may
choose to use the mean or the median. Similarly, we propose two
options for the Snap construction — vAS and zAS. Their results
are usually similar. They are identical when F contains only two
surfaces.

vAS produces a surface that is a subset of the 2-dimensional
valley of the scalar function that, at each point, sums the
squared distances to the Bi’s.
zAS produces a surface that is a subset of the zero-set of the
scalar function that, at each point, sums the signed distances
to the Bi’s.

Snapworks as follows. It initializes p to pk. Then, it adjusts p by a
short series of ‘Moves’ until p converges to a stable position, which,
by definition, lies on Snap set B. Fig. 3 is a schematic overview of
Snap, in a 2D setting. We analyze Snap theoretically, and provide
experimental evidence that Snap converges in about 3 or 4 Moves
to the Snap set.

In practice, we only snap a chosen subset of points pk of Bk
(see Fig. 3, where k = 3). When these are the vertices of a given
triangulation T ∗k of Bk, snapping them produces a triangulation T
of B.

Then, for each input surface Bi, we compute the closest projec-
tions of the vertices of T onto Bi to obtain a triangulation Ti of Bi.
Hence, for each input surface Bi (including the surface Bk, whose
sample triangulation T ∗k we use for seeding Snap), we create an
approximating triangulation Ti. All these Ti have the same number
of vertices as T , and, also, implicitly inherit the connectivity of T .
T itself, has the same number of vertices as T ∗k , and inherits its
connectivity.

We propose and analyze two variants of Snap, which differ
in their symmetry and practical usefulness. Our first variant is
symmetric in its constructions, but, Tk may be different from T ∗k .
In the second variant, Tk = T ∗k .

We use these n + 1 triangulations (T and all Ti) as input for
an a posteriori validity test, in which we check the compatibility
between sets of the corresponding triangles.

We do not discuss verifying whether each triangulation Ti
approximates the corresponding input surface Bi with sufficient
geometric and topological accuracy, because (1) the suitable so-
lution depends on how Bi is represented and on what closeness
measure and validity definition is used, (2) this is an important
problem that extends far beyond our scope, and (3) it is covered
in various prior publications, for example those focused on surface
simplification [4–6], on resampling and remeshing [7–9], or on
reconstruction [10] and those focused onmeasuring the Hausdorff
distance between two surfaces [11,12]. We advocate testing com-
patibility between T and each Ti and between each Ti/Bi pair by
testing projection-homeomorphisms [3].

For studying statistical variability, at a point p of the computed
average surface, B, one may compute the squared distances from
p to each input shape, Bi, and use the average of these values as a
measure of the local variance, v(p), of the family F. In the context
of manufacturing, for inspection and online process improvement,
the local variance facilitates novel visualizations to help engineers
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