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a b s t r a c t

Subdivision surfaces provide an elegant isogeometric analysis framework for geometric design and
analysis of partial differential equations defined on surfaces. They are already a standard in high-end
computer animation and graphics and are becoming available in a number of geometric modelling
systems for engineering design. The subdivision refinement rules are usually adapted from knot insertion
rules for splines. The quadrilateral Catmull–Clark scheme considered in this work is equivalent to cubic
B-splines away from extraordinary, or irregular, vertices with other than four adjacent elements. Around
extraordinary vertices the surface consists of a nested sequence of smooth spline patches which join C1

continuously at the point itself. As known from geometric design literature, the subdivision weights can
be optimised so that the surface quality is improved byminimising short-wavelength surface oscillations
around extraordinary vertices. We use the related techniques to determine weights that minimise finite
element discretisation errors as measured in the thin-shell energy norm. The optimisation problem is
formulated over a characteristic domain and the errors in approximating cup- and saddle-like quadratic
shapes obtained from eigenanalysis of the subdivision matrix are minimised. In finite element analysis
the optimised subdivision weights for either cup- or saddle-like shapes are chosen depending on the
shape of the solution field around an extraordinary vertex. As our computations confirm, the optimised
subdivisionweights yield a reduction of 50% andmore in discretisation errors in the energy and L2 norms.
Although, as to be expected, the convergence rates are the same as for the classical Catmull–Clarkweights,
the convergence constants are improved.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Isogeometric analysis aims to provide a seamless engineering
design-analysis workflow by using a single common representa-
tion for geometric modelling and analysis. This is usually achieved
by representing geometry and discretising analysis models with
the same kind of basis functions [1]. The prevailing feature-based
CAD modelling systems rely on trimmed NURBS and boundary
representations (B-Reps). The resulting non-watertight geometries
consisting of several trimmed patches pose unique challenges to
finite element analysis. As a generalisation of splines, subdivision
surfaces can provide watertight representations for geometries
with arbitrary topology. After their early success in computer ani-
mation and graphics they are nowsupported inmanyCAD systems,
including Catia, PTC Creo and Autodesk Fusion 360. Before the
advent of isogeometric analysis, it had already been realised that
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subdivision surfaces provide also ideal basis functions for finite
element analysis, in particular, of thin-shells [2–5], see also more
recent work [6,7].

Subdivision schemes for generating smooth surfaces were first
described in the late 1970s as an extension of low degree B-splines
to control meshes with non-tensor-product connectivity [8,9]. In
subdivision a geometry is described with a control mesh and a
limiting process of repeated refinement. For parts of the mesh
containing only regular vertices, with each adjacent to four quadri-
lateral faces, the refinement rules are adapted from knot insertion
rules for B-splines. For the remaining parts with extraordinary
vertices the refinement rules are chosen such that they yield in the
limit a smooth surface. Subdivision refinement is a linear mapping
of coordinates of the coarse control mesh to the coordinates of
the refined mesh with a subdivision matrix. Hence, the local limit
surface properties can be inferred from the eigenstructure of the
subdivision matrix after a discrete Fourier transform [8,10]. The
C1 continuity of the surface and its curvature behaviour at the
extraordinary vertex depend on eigenvalues and the ordering,
i.e. Fourier indices, of the corresponding eigenvectors. In turn, both
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depend on the coefficients of the subdivision matrix that encodes
the specific refinement rules applied.

As known, around extraordinary vertices short-wavelength
surface oscillations, i.e. ripples, may occur irrespective of C1 con-
tinuity and boundedness of curvature [11,12]. There have been
many attempts to improve the fairness of subdivision surfaces,
that is, to minimise curvature variations, by carefully tuning the
refinement rules, earlier works include [13,14]. More recently, in
Augsdörfer et al. [15] the refinement rules for Catmull–Clark and
other quadrilateral schemes have been optimised such that the
variation of the Gaussian curvature is minimised while ensuring
bounded curvatures. Different from the direct search method used
in [15], the refinement rules can also be obtained from a nonlinear
constrained optimisation problem. Barthe et al. [16] apply such a
procedure to triangular Loop and

√
3-subdivision schemes with a

multi-objective cost function comprised of terms penalising diver-
gence of curvatures and aiming local quadratic precision. In Ginkel
et al. [17] a fairness increasing cost function containing the third
derivatives of the surface in combination with C1 continuity and
bounded curvature constraints is optimised.

In the present paper, we optimise the subdivision refinement
rules so that their approximation properties are improved when
used in finite element analysis of thin-shells. Thin-shells are
prevalent in many engineering applications, most prominently in
aerospace, automotive and structural engineering, and are equiva-
lent to thin-plates when their unstressed geometry is planar [18].
The thin-shell energy functional, and weak form, depend on the
second order derivatives of the stressed surface. Consequently, it
is crucial to reduce any short-wavelength oscillations in the sub-
division surface. As the included examples demonstrate, meshes
with extraordinary vertices usually lead to lower convergence
rates thanmeshes with tensor-product connectivity. For obtaining
the improved isogeometric analysis adapted refinement rules we
postulate a constrained optimisation problem with a cost func-
tion measuring the errors in approximating cup- and saddle-like
quadratic shapes. Three of the weights in the Catmull–Clark sub-
division scheme around an extraordinary vertex are chosen as
degrees of freedom for optimisation. As constraints the C1 conti-
nuity of the surface is strictly enforced and bounded curvatures
are enforced as long as non-negative real weights are feasible.
The eigenstructure of the subdivision matrix is extensively used in
formulating the optimisation problem as usual in previous related
work [19, Chapter 4,5] and [20, Chapter 15]. We compute the
eigenvalues and eigenvectors numerically after applying a discrete
Fourier transform that exploits the local circular symmetry around
the extraordinary vertex. The local parameterisation of the subdi-
vision surface required for evaluating the finite element integrals
and the cost function is obtained with the algorithm proposed by
Stam [21]. Two sets of optimised weights for cup- and saddle-
like shapes are obtained. The weights for finite element analysis
are chosen depending on the dominant shape of the solution field
around an extraordinary vertex.

For completeness, we note that subdivision is not the only
approach for creating smooth surfaces on arbitrary connectiv-
ity control meshes. Over the years numerous Ck and Gk smooth
constructions with k ≥ 1 have been proposed, too many to
name here. The search for sufficiently flexible smooth surface
representations, especially with Ck≥2 and Gk≥2, is still open. It
is worth mentioning that none of the existing constructions is
widely used in commercial CAD systems. This maywell be because
their implementation is too complicated. The application of basis
functions resulting from smooth constructions for isogeometric
analysis is currently a very active area of research. For instance, the
utility of Gk constructions with NURBS has recently been explored
in [22–24]. Alternatively, Ck constructions relying on manifold-
based surface constructions [25–27] and constructions relying on

singular parameterisations have also been investigated [28–30].
Some of these schemes are able to provide optimal convergence
rates.

The outline of this paper is as follows. In Section 2 the Catmull–
Clark subdivision is introduced, with a review of the relevant
theory on eigenanalysis of the subdivision matrix. Specifically, the
necessary conditions for C1 smoothness and boundedness of the
curvature are motivated, and the local parameterisation of subdi-
vision surfaces using the characteristic map is introduced. These
are all classical results and concepts which are mostly unknown
in isogeometric analysis. In Section 3 the proposed constrained
optimisation problem and its numerical solution are discussed.
Two sets of subdivisionweights are derived thatminimise the thin-
plate energy normerrors in approximating locally cup- and saddle-
like shapes. Subsequently, it is shownhowa finite element solution
can be locally decomposed into cup- and saddle-like components.
Depending on this decomposition and the following choice of
optimal weights, a second more accurate finite element analysis
can be performed. In Section 4 the proposed approach is applied
to transversally loaded thin-plate problems using meshes with
extraordinary vertices and the convergence of the errors in L2 and
energy norms is reported.

2. Catmull–Clark subdivision surfaces

2.1. Refinement weights and the subdivision matrix

Catmull–Clark subdivision is a generalisation of cubic tensor-
product B-splines to unstructured meshes [9]. On non-tensor-
product meshes the number of faces connected to a vertex, i.e. va-
lence v, can be different from four. The vertices with v ̸= 4
are referred to as extraordinary or star vertices. During subdivision
refinement each face of the control mesh is split into four faces and
the coordinates of the old and new control vertices are computed
with the subdivision weights given in Fig. 1. The weights in each
of the three diagrams have to be normalised so that they add up
to one. The unnormalised weights assigned to the extraordinary
vertex (empty circle) are denoted by α, β and γ , respectively. For
v = 4 and bivariate cubic B-splines the three weights take the
values α = 8, β = 1 and γ = 1. The new vertices introduced by
the subdivision process are all regular (with v = 4) and the total
number of irregular vertices in the mesh remains constant. That
is, the irregular vertices are more and more surrounded by regular
vertices.

In order to study the smoothness behaviour of subdivision
surfaces near an extraordinary vertex, it is sufficient to consider
only the vertices in its immediate vicinity. A 1-neighbourhood of
a vertex is formed by the union of faces that contain the vertex.
The n-neighbourhood is defined recursively as the union of all
1-neighbourhoods of the (n − 1)-neighbourhood vertices. It is
assumed that the considered n-neighbourhood has only one single
extraordinary vertex located at its centre. The n-neighbourhood
control vertices pℓ at the refinement level ℓ are mapped to control
vertices pℓ+1 with the subdivision matrix S ,

pℓ+1
= Spℓ. (1)

The square subdivision matrix S can be readily derived from the
weights indicated in Fig. 1. The control point coordinates at level ℓ
are arranged in this form

pℓ
=

⎡⎢⎢⎣
pℓ
1x pℓ

1y pℓ
1z

pℓ
2x pℓ

2y pℓ
2z

...
...

...

⎤⎥⎥⎦ (2)

with each row containing the coordinates of one control point
pℓ
j ∈ R3 with the index j.
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