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a b s t r a c t

Anovel approach to computing the discrete solution to the challengingmulti-material topology optimiza-
tion problem under total mass constraint is studied in this paper. The challenge of the problem lies in the
incompressibility constraint on the summation of the usage of the total materials, which significantly
increases the associated computational difficulty, and is seldom studied before; a few previous studies
focus on respective mass constraint on each used material, whose solution lies in a strictly feasible
space and is easier to compute. Solution to the optimization problem is derived on a theoretical finding
that the iterative density update in a two-material optimization problem is totally determined by the
rankings of the elemental compliances, which only involves an FE analysis computation, and can be
efficiently achieved. Based on this theoretical insight, a practical regulated iterative numerical approach
is then devised to find the solution to the multi-material topology optimization problem by solving a
series of two-material subproblems. Various 2D and 3D numerical examples demonstrate its capability in
providing structure of better compliance as compared with results obtained using latest approach based
on density interpolation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Topology optimization finds the best material distribution
within a prescribed design domain, solid or void, in order to pro-
duce a structure of optimal performance. Since the seminar work
by Bendsoe and Kikuchi [1], topology optimization has undergone
a remarkable development over the past decades in both academic
research [2–5] and industrial applications [6,7]. Amongst these
developments, most of these approaches generally relaxed the
problem into a continuous parameter optimization problem taking
elemental density (such as SIMP (Solid Isotropic Material with
Penalization) [8]) or structural outer shape as design variables
(such as level set [9,10]), and then solve it based on the tra-
ditional Newton-type (gradient-based) optimization algorithms.
Other researches also compute directly discrete solutions to the
problemusing evolutionary approach (such as BESO (Bi-directional
Evolutionary Structural Optimization) [11,12]) or programming
techniques [13]. A comprehensive comparison between these ap-
proaches are referred to a recent survey [14,3].

In the single-material topology optimization, the material is
specified a-priori and the structure is optimized with respect to it.
In contrast, the multi-material topology optimization is posed to
seek not only the optimal structural form but also simultaneously
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various material distributions, in order to realize specific design
purposes that are otherwise difficult to achieve by single-material
structures [15], or to achieve optimal structural performance. As
compared with the widely studied former problem, the latter
one is much less studied, including approaches based on density
(SIMP) [16], phase field [17–19], level set [20], combinatorial op-
timization [21], or evolutionary approach (BESO) [22]. A recent
detailed discussions on the topic are further referred to [19,16].

Challenges. The challenges of multi-material topology optimiza-
tion are mainly related to its intrinsic mathematical structure of
the design space. In the case of single material, the design variable
is just the occupation of the single material, whose associated
design space is generally sufficiently regular, and can be easily
resolved for instance using the optimality criteria [23] or gradient
projection [18,19]methods; using discrete variables is only studied
by [21]. In contrast, in the case ofmulti-materials on totalmass con-
straint, an additional usage on the summation of the totalmaterials
(the incompressibility constraint) is required, which significantly
increases the computational costs of the corresponding numerical
solution, which is seldom studied before [24–26,21,16].

The different mathematical structures additionally raise chal-
lenging issues on an appropriate topology description model,
which has to effectively indicate distinct materials inside the do-
main, fully covering the design domain but not overlapping. Specif-
ically, each elemental domain has a distinct material and they all
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Fig. 1. An example of four-material topology optimization problem. A, B, C and D
are four kinds of candidate materials with different Young’s modulus and densities.

together, materials and voids, fully cover the design domain. Pre-
vious approaches based on density or shape descriptions and in-
terpolation have to carefully devise various strategies to overcome
it, and also have a risk of having intermediate design elements
with nonphysical materials. The proposed discrete optimization
approach naturally avoids these issues.

Approach and contributions. The paper proposes a novel approach
to multi-material topology optimization under total mass con-
straint, only studied previously in [21,16] to our best knowledge.
The proposed approach is also the first using discrete variables to
resolve the multi-material optimization problem under total mass
constraint. The discrete variable representation thus avoids the
limitations of previous interpolation-based approaches in that they
are not physically based or have intermediate design elements.
Furthermore, the discrete material expression naturally satisfies
the design requirements that all the material densities are sepa-
rated and fully occupy the design domain.

The overall approach is based on an evolutionary mass reduc-
tion strategy, and focuses on the classical complianceminimization
problem. The success of the approach is built on a key observation
under rigorous proof that the optimal material distribution update
in each iteration step only depends on the elemental compliance
ranking in case of two materials, and cases of multi-material can
be reduced to the two-material problem. The convergence of the
overall approach is further improved via introducing a density
regulation approach that ensures smooth density transition during
the optimization process. Performance of the proposed approach is
demonstrated through 2D and 3Dnumerical examples. Its compar-
isonswith results obtained using classical SIMP approach shows its
capability in designing structures of better compliance.

The remainder of the paper is arranged as follows. Problem def-
inition and the theoretical basis to resolve it are given in Section 2.
Section 3 explains technical details on it numerical implementa-
tion. Numerical results on 2D and 3D examples are demonstrated
in Section 4, and the paper is concluded in Section 5.

2. Problem and theory

Suppose Ω = {Ωe, e = 1 . . .N} is a discrete design domain
consisting of N disjoint square FE elements Ωe, (Ej, ρj), j = 1 . . .m
are the m candidate materials of Young’s modulus Ei and density
ρi satisfying E1 ≥ · · · ≥ Em and ρ1 ≥ · · · ≥ ρm; it is assumed
that all the base materials have equal Poisson’s ratios. Apparently,
for candidate materials satisfying Ei ≥ Ej, ρi ≤ ρj, material i is just
superior to material j in problem (1), and we can simply choose
material i instead of j without further topology optimization.

The multi-material topology optimization problem considers
the classical problem of maximizing the stiffness of a structure, or
minimizing its compliance under constraint on the usage of total
mass, as illustrated in Fig. 1 and stated below. Find the optimal
multi-material distribution x such that

min
x

c(x) =
1
2
uTK(x)u

s.t. K(x)u = f, u ∈ U
M(x) ≤ M∗.

(1)

Here x gives the specific material of every finite element as

x = {xe}, xe = {xej}, e = 1, . . . ,N, j = 1, . . . ,m, (2)

where xej = 1 or 0 determines whether element e is filled with the
jthmaterial at an addition requirement that each element e is filled
by one and only one kind of material, that is,

m∑
j=1

xej = 1. (3)

The total mass is defined as follows

M(x) =

N∑
e=1

ρ(xe), for ρ(xe) =

m∑
j=1

xejρj. (4)

In addition, u and U ⊂ RN are the nodal displacement vector
and its admissible space, where certain Dirichlet boundary condi-
tions are prescribed. K(x) is the global stiffness matrix, decided by
material distribution x, which is calculated by

K(x) = {E(xe)k0}, E(xe) =

m∑
j=1

xejEj (5)

for a unit stiffness matrix k0. f is the external force vector. The
structure compliance c(x) is calculated by

c(x) =
1
2
uTK(x)u =

N∑
e=1

m∑
j=1

1
2
xejEjuT

e (x)k0ue(x), (6)

where ue is the displacement vector of element e.
The original problem (1) is equivalently written

min
x∈A

{c(x) | K(x)u = f}, (7)

where the design domain A = {x|M(x) ≤ M∗
}.

The proposed approach to resolving problem (1) is achieved
via gradually reducing the mass from an initial distribution till the
target one, as also used in the well-studied evolutionary approach
BESO [27]. The initial value of x is set as density fully filled by
the material M1 of the largest Young’s modulus among all the
candidate materials, which is an obvious global optimal solution
under the associated mass constraint. Before further explanation
on the overall approach, we first explain below the density update
strategy in each of the optimization step as the base of the pro-
posed approach.

Noticing that the stiffnessmatrixK and displacementu are both
dependent on the density x, taking derivatives on both sides of the
equilibrium equation

K(x)u(x) = f (8)

with respect to the design variable xej gives

∂K(x)
∂xej

u(x) + K(x)
∂u(x)
∂xej

= 0, (9)

and by basic transformation, there is
∂u(x)
∂xej

= −K−1(x)
∂K(x)
∂xej

u(x). (10)

On the other hand, according to the compliance definition and
equilibrium equation (8)

c(x) =
1
2
uTK(x)u(x) =

1
2
uT (x)f, (11)

we have its partial derivative with respect to design variable xej
∂c(x)
∂xej

=
1
2
fT

∂u
∂xej

, (12)
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