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a b s t r a c t

To be directly useful both for shape design and a thin shell analysis, a surface representation has to
satisfy three properties: (1) be compatible with CAD surface representations, (2) yield generically a good
highlight distribution, and (3) offer a refinable space of functions on the surface. Here we propose a new
construction, based on a number of recently-developed techniques, that satisfies all three criteria. The
construction converts quad meshes with irregularities, where more or fewer than four quads meet, to C1

(or, at the cost ofmore pieces, C2) bi-4 surface consisting of subdivision rings for themain body completed
by a tiny G1 cap.

Crown Copyright© 2018 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Modern piecewise polynomial constructions are based on
careful parameterizations to achieve generically good highlight
line distributions also where more or fewer than four 4-sided
pieces meet. This representation is directly compatible with cur-
rent CAD surface standards. Remarkably, such Gk constructions
automatically provide a Ck space of functions on the surfaces [1,2].
However, nested refinement of the Gk representation requires
careful tracking of the original Gk edges to ensure that a solution
obtained at one level of refinement is not lost at the next finer one.
Already when k = 1, the characterization of all possible degrees of
freedom, evenwhen joining just one pair of patches, is not easy [3].
For specific high-end surface constructions, where the degrees of
freedomunder refinement have been explicitly characterized, they
are heterogeneously distributed [4].

An alternative is to model multi-sided surface pieces with an
infinite sequence of nested polynomial surface rings so that nested
refinement is built-in. Such generalized subdivision is exemplified
by Catmull–Clark (CC) subdivision [5]. Unfortunately many parts
of the CAD pipeline are not set up for infinite recursive definition.
More importantly, as Fig. 1 illustrates, CC subdivision produces
poor highlight lines even for simple configurations, such as joining
two crossing pipes. Note the characteristic ‘pinching’ of highlight
lines near the 6-valent irregularity.

Retaining the best of subdivision and geometrically continuous
surface constructions leads to the approach of this paper. The key
observation is that in practice, analysis works with a maximal
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anticipated refinement level ℓ for a given geometric design. We
therefore propose to model multi-sided surface pieces as a se-
quence of C1 surface rings closed off by an n-sided G1-cap at the
final anticipated refinement level.

a. Since the final surface consists of a fixed number of 3nℓ+4n
bi-4 (bi-quartic) surface pieces, it is CAD representable.

b. Since the surface rings and final cap carefully follow a
guiding shape, good highlight line distribution as in Fig. 1
is observed, without exception for an obstacle course of
challenging configurations.

c. Since the maximal refinement level at the irregularity is
realized by the G1-cap, it need not be refined. And since
the sequence of surface rings forms a C1 complex, nested
refinability amounts to standard regular spline refinement.

While non-trivial in its derivation, the bi-4 surface is efficiently
constructed via pre-tabulated operators, akin to the more light-
weight subdivision stencils of CC subdivision. The number of sur-
face rings can be varied to suit the application.

Structure of the paper. Section 2 explains the input and basic tools
used for the constructions: the corner jet constructor, maps of
total degree and characteristic parameterizations. Section 3 de-
scribes the guide and Section 4 a guided subdivision. Section 6
characterizes the eigenstructure of this subdivision and reveals
how it is inherited from a guide surface. Section 5 reformulates the
bi-4 guided subdivision to look more like traditional CC subdivi-
sion. Section 7 sketches how G1 caps yield a high-quality, hybrid
construction with finitely many patches. Section 8 illustrates the
surface quality according to alternatives and trade-offs that lead to
the preferred bi-4 construction presented here.
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(a) Input quad-mesh. (b) Catmull–Clark.

(c) Bi-4 guided rings + cap. (d) New finite bi-4.

Fig. 1. (a) Input mesh with (top) adjacent nodes of valence 6 and (bottom) once
refined. (b) Pinched highlight lines typical of Catmull–Clark subdivision surfaces.
(c) Regular surface of degree bi-3 (green) and C1 bi-4 guided rings with tiny G1 bi-4
cap (red) covering the 6-sided region with a guided surface with (d) good highlight
line distribution. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

(a) c-net extended by 1 layer. (b) Bi-3 ring + tensor-border.

Fig. 2. B-spline-like irregular control net and tensor-border. (a) Extended c-net for
n = 5. (b) Schema of surface ring (green) and its tensor-border (of degree 3 and
depth 2 = inner grid of BB-coefficients). The tensor-border is the input for the
multi-sided construction. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

2. Definitions and setup

This section characterizes the input, operators, C1 polynomial
caps of total degree, and the reparameterizations used to define
first the guide and then the final surface.

2.1. A B-spline-like control net for irregular layout

We consider as input a network of quadrilateral facets, short
quads. Nodes where four quads meet are regular, otherwise irreg-
ular. We assume that each irregular node is surrounded by at least
one layer of regular nodes. Fig. 2a shows the c-net (bullets) of an
isolated node of valence n = 5. The c-net consists of the irregular
node plus 6n nodes forming two layers of quads surrounding

Fig. 3. Corner jet constructor [f ]d3×3 at work. (a) Hermite data as partial derivatives
converted to (b) BB-form assembled, by averaging 3 × 3 jets, into (c) a patch of
degree bi-4. (d) L-shaped sector of the tensor-border t. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

it. Typically a third layer is added for evaluation of local shape.
The extra layer provides a surrounding surface (green in Fig. 2b).
This allows tracing the highlight line distribution [6] across the
transition where quality is as important and challenging as the
internal quality of the cap.

Each 4 × 4 sub-grid of nodes is interpreted as the B-spline
control points of a bicubic tensor-product spline surface. Except at
the irregular node, well-known formulas can be applied to convert
the B-spline form to Bernstein–Bézier form (see e.g. [7,8]). The
tensor-product Bernstein–Bézier (BB) form of bi-degree d is

p(u, v) :=

d∑
i=0

d∑
j=0

pijB
d
i (u)B

d
j (v) ,

(u, v) ∈ □ := [0..1]2, where Bd
k(t) :=

(
d
k

)
(1 − t)d−ktk

are the BB-polynomials of degree d and pij are the BB coefficients.
Fig. 2b also shows the C2 prolongation of this surface ring, i.e. Her-
mite data represented as a grid (black) of bi-3 BB-coefficients.
Specifically, the BB-coefficients pij, i = 0, . . . , 3, j = 0, . . . , 2,
represent Hermite data of order 2 along one boundary curve v =

0. Degree-raised to bi-degree 4, we call these data tCC . In the
remainder of this paper, we refer to second-order Hermite data of
degree 4 along the loop of boundary curves as one of

t,h = a tensor-border of degree 4 and depth 2.

Wewill construct tensor-product patches and tensor-borders with
the help of jet constructors

[f ]di×j, the corner jet constructor,

expresses, at a corner of the domain square [0..1]2, the expansion
of a function f of order i − 1 in u and j − 1 in v in BB-form of bi-
degree d. That is, [f ]di×j outputs i × j BB-coefficients (see Fig. 3a,b
for i = 3 = j). Fig. 3c displays four corner jet constructors
[f ]43×3 merged to form a bi-4 patch by averaging the overlapping
BB-coefficients.

Fig. 3d illustrates the analogous assembly of an L-shaped sector
of the tensor-border by applying and averaging a jet constructor at
three corners.

Several steps of the surface construction use a simple sym-
metric rule, called C2-rule in the following and illustrated in
Fig. 4: two curve segments (of the same degree) in BB-form join
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