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a b s t r a c t

The free-form deformation (FFD) method deforms geometry in n-dimensional space by employing an
n-variate function to deform (parts of) the ambient space. The original method pioneered by Sederberg
and Parry in 1986 uses trivariate tensor-product Bernstein polynomials inR3 and is controlled as a Bézier
volume. We propose an extension based on truncated hierarchical B-splines (THB-splines). This offers
hierarchical and local refinability, an efficient implementation due to reduced supports of THB-splines,
and intuitive control point hiding during FFD interaction. Additionally, we address the issue of fold-overs
by efficiently checking the injectivity of the hierarchical deformation in real-time.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

One of the desired features of a modelling software is the capa-
bility of deforming an object in an efficient, precise, and smooth
manner [1]. This can be achieved through the use of free-form
deformation (FFD) techniques. The original FFDmethodwas devel-
oped in [2]. It is based on Bernstein polynomials and intuitive con-
trol is provided through Bézier volumes. FFDs use the intuition that
geometry can be deformed along with the space it is embedded in.
This technique is highly flexible as it can be used globally or locally,
with any degree of continuity, and even preserve volume [2].

Bernstein polynomials provide a versatile and simple basis for
FFDs. However, they suffer from several limitations, most notably
they have global support and fixed polynomial degree for a given
number of freedoms in the corresponding control structure. This
can be alleviated by employing B-splines instead [3]. Moreover,
finer control is offered in the rational settingwithweights attached
to control points [4,5].

FFDs have been further generalised to accommodate deformed
control structures [6] and control structures of arbitrary topol-
ogy [7,8]. Additionally, special techniques have been developed to
correctly deform polygonal meshes [9]. In our work, we remain in
the structured setting and focus on hierarchical techniques.

Hierarchical splines were introduced in [10] to facilitate local
refinement. However, the proposed method does not possess the
partition of unity property in the hierarchical setting and thus finer
level edits need to be maintained either independently of other
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levels, or via control vectors [10,11] rather than control points.
Hierarchical B-splines have been applied in the context of fitting
and image registration [12,13]. Since then, several methods which
maintain partition of unity and support local refinement have
been proposed. T-splines [14] allow for T-junctions in the control
structure, LR-splines [15] rely on local splitting of B-splines, and
THB splines [16] restore partition of unity of the hierarchical basis
by a truncation mechanism.

Although T-splines have been extended, modified, and even
applied in the context of FFDs, see [17,18] and the references
therein, their rational naturemakes them less efficient than purely
piecewise polynomialmethods.While LR-splinesmay seema good
candidate for FFDs as they can be equipped with a control-point
structure for the user to manipulate, such control structures typi-
cally lack a clear and intuitive hierarchy.

In contrast, THB-splines offer a clear hierarchical structure,
which enables us to selectively hide control points from certain
levels in the user interface [16,19], and offer polynomial basis
functionswith reduced supportswhen compared to non-truncated
alternatives [20]. Their locality and numerical efficiency are ideally
suited for FEM-based non-rigid image registration [21,22] and for
performance-critical scenarios such as real-time FFDs performed
on dense meshes. This also allows the use of more demanding
techniques such as self-intersection detection and prevention [23]
without sacrificing interactivity. Further advantages of B-spline
hierarchies are nicely summarised in [19,20]. An example FFDwith
THB-splines is shown in Fig. 1.

Our main contributions are:

• a real-time FFD method based on THB-splines,
• intuitive user interface with features such as control point

hiding and region of influence highlighting,
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Fig. 1. Far left: The input Stanford Bunny model (35K vertices, 70K faces). Left: The model embedded in a tri-cubic B-spline volume with 10×10×10 control points (level
zero), one of which (pointed to by the black arrow) has been moved to adjust the shape of its left ear. Middle: Control structure of level one as requested by the user near
the left ear consisting of 3×3×3 control points of level one. All control points of level zero have been on the user’s request hidden to avoid visual clutter. Right: One of the
control points of level one has been moved to finely adjust the local shape of the ear. Far right: The same situation, but this time with the region of influence of the control
point beingmoved highlighted; yellow indicates small influence and red large influence, as determined by the associated basis function. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The FFD concept illustrated on a simple 2D example. Four control points Pij
define the control structure of a bi-linear FFD (left). A single vertex Vwith paramet-
ric coordinates (uV, uV) is deformed to its new positionwhen P11 is displaced byD11
(right).

• efficient injectivity checking resulting in interactive fold-
over prevention.

We start by reviewing FFDs and THB-splines and show how to
integrate these two frameworks (Section 2). Then we present our
approach to ensuring injectivity of FFDs aswell as normal updating
(Section 3). Implementation details are presented in Section 4 and
results are discussed in Section 5. Finally, we conclude the paper
and point to future work (Section 6).

2. Free-from deformations and THB-splines

In this section we recall the basic concepts regarding FFDs and
THB-splines.

2.1. Free-form deformations

FFD is a method for deforming objects by moving the control
points of a control structure encapsulating (parts of) these objects.
There are many approaches to specifying these structures, from
regular axis-aligned grids [2] to unstructured and arbitrarily ori-
ented meshes [7]. Once the control structure has been specified,
parametric coordinates of each vertex of the deformed object(s),
which we assume is a (dense) triangular mesh, are computed. This
is in general a difficult problem.

In our work, we assume that the control structure forms a reg-
ular tensor-product axis-aligned grid (which can later be refined
in a hierarchical manner; see Section 2.2) of control points Pijk
corresponding to a tensor-product B-spline volume of a certain tri-
degree. The individual control points are geometrically positioned
based on their associated Greville abscissae ξijk [24]. In that case,

the parametric coordinates (uV, vV, wV) of each to-be-deformed
vertex V are easily calculated using a linear transformation [2].

Assume that the associated B-spline volume is given by

X(u, v, w) =
∑
ijk

βijk(u, v, w)Pijk, (1)

where βijk are the tri-variate tensor-product B-splines defined over
(typically open-uniform) knot vectors whose size is specified by
the number of desired control points in each parametric direc-
tion and the spline degree. Then indeed X(u, v, w) = (u, v, w)
when Pijk = ξijk for all i, j, k and thus the parametric coordinates
(uV, vV, wV) follow from a linear transform. Namely, let (xV, yV, zV)
be the original coordinates of vertexV, and let (xmin, ymin, zmin) and
(xmax, ymax, zmax) be the minimal and maximal Cartesian coordi-
nates inR3 among all Pijk, respectively. The parametric coordinates
(uV, vV, wV) of V are then

uV =
xV − xmin

xmax − xmin
,

vV =
yV − ymin

ymax − ymin
,

wV =
zV − zmin

zmax − zmin
.

Once the parametric coordinates of each vertex are known, each
V is mapped (deformed) to X(uV, vV, wV) as the control points Pijk
are moved by the user. An illustration of this concept is shown in
Fig. 2.

While this provides a simple and efficient FFD system, local
deformations are not possible due to the global tensor-product
structure of the involved tri-variate B-splines. In order to sup-
port granular deformations in a hierarchical setting, we employ
THB-splines.

2.2. Truncated hierarchical B-splines

Truncated hierarchical B-splines [16] provide, as discussed in
Section 1, a number of advantages over other hierarchical tech-
niques based on B-splines. We now recall some of their basic
properties; further details can be found in [16,20].

Starting from the familiar setting of tensor-product B-splines
(1), hierarchical B-splines (HB-splines) first build a hierarchy of
these spanning several levels based on a user-specified hierarchy
of N nested domains

Ω = Ω0
⊇ Ω1

⊇ · · · ⊇ ΩN−1
⊇ ΩN

= ∅. (2)

The auxiliary (empty) setΩN is defined to simplify notation below.
The level zero domain Ω0

= Ω is the domain of the original tri-
variate tensor-product B-splines of (1). An example is shown in
Fig. 3.
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