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h i g h l i g h t s

• A strategy for defining cubic tensor product spline functions is proposed.
• Simple rules for inferring local knot vectors to define blending functions for a given T-mesh.
• Examples of application of the strategy for adaptive refinement in isogeometric analysis and CAD.
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a b s t r a c t

We present a new strategy for constructing spline spaces over hierarchical T-meshes with quad- and oc-
tree subdivision schemes. The proposed technique includes some simple rules for inferring local knot
vectors to define C2-continuous cubic tensor product spline blending functions. Our conjecture is that
these rules allow to obtain, for a given T-mesh, a set of linearly independent spline functions with the
property that spaces spanned by nested T-meshes are also nested, and therefore, the functions can repro-
duce cubic polynomials. In order to span spaces with these properties applying the proposed rules, the
T-mesh should fulfill the only requirement of being a 0-balancedmesh. The straightforward implementa-
tion of the proposed strategy canmake it an attractive tool for its use in geometric design and isogeometric
analysis. In this paper we give a detailed description of our technique and illustrate some examples of its
application in isogeometric analysis performing adaptive refinement for 2D and 3D problems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Themain drawback of using B-splines and NURBS for geometric
design is the impossibility to perform local refinement. T-splines
were introduced by Sederberg et al. [1] as an alternative to NURBS.
Based on the idea of admitting meshes with T-junctions and in-
ferring local knot vectors by traversing T-mesh edges, T-splines
have provided a promising tool for geometricmodeling that allows
to perform local refinement without introducing a large number
of superfluous control points. Later, in [2], T-splines were incor-
porated to the framework of isogeometric analysis. Isogeometric
analysis (IGA) was introduced in 2005 by Hughes et al. in [3,4]. It
has arisen as an attempt to unify the fields of CAD and classical fi-
nite element methods. The main idea of IGA consists in using for
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analysis the same functions that are used in CAD representation of
the geometry.

To use spline functions for numerical analysis and obtain a
proper convergence behavior, these functions must meet some
requirements: linear independence, polynomial reproduction
property, local supports and possibility to perform local adaptive
refinement. This issue has been the object of numerous research
works in recent years.

Analysis-suitable T-splines, proposed by Scott et al. in [5],
are a class of T-splines defined over T-meshes that should meet
certain topological restrictions formulated in terms of T-junction
extensions. Basis functions defined over an extended analysis-
suitable T-mesh are linearly independent [6] and form a partition
of unity. The refinement algorithm allows to accomplish highly
localized refinements and constructs nested T-spline spaces, but
it presents an elevated implementation complexity and, as far as
we know, the generalization of the strategy to 3D cases is still an
open question.

Another approach to the problem of local enrichment of the
approximation space is the hierarchical refinement, originally
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introduced by Forsey and Bartels in [7] and later developed in [8].
Recently, hierarchical refinement technique in the context of iso-
geometric analysis was described in [9–11]. This approach is based
on a simple and natural idea to construct multilevel spaces by
replacing coarse level functions with finer basis functions. Start-
ing from an initial uniform mesh, hierarchical refinement scheme
leads to sequential construction of nested spline spaces with lin-
early independent basis functions. Simplicity of its implementa-
tion and straightforward generalization to 3Dmake it an attractive
option for local refinement. However, a drawback of this strategy
is the impossibility to define a spline space over a given arbitrary
T-mesh as well as the presence of redundant basis functions and
excessive support overlapping. An interesting theoretical approach
to the latter problem was given in [12]. The truncation technique
is applied to redefine the function supports and reduce their over-
lapping.

Other options for performing local refinement of spline spaces
are C1-continuous PHT-splines [13] or local refined splines
(LR-splines) [14].

In the present paper we propose another possible alternative
for the construction of spline functions that span spaces with nice
properties. The technique we present here is designed for hier-
archical T-meshes (multilevel meshes) with a quad- and octree
subdivision scheme. This type of meshes can be efficiently im-
plemented with tree data structures [15] which are frequently
used in engineering. Due to the elevated complexity of all cur-
rent strategies, the main goal we pursue here is the simplicity and
low computational cost of the implementation, both in 2D and 3D.
For that, we have to assume a restriction on the T-mesh. Namely,
the T-mesh should fulfill the requirement of being a 0-balanced
mesh. A balanced mesh condition is usually imposed to have grad-
ual transition from the coarse mesh to the finer zones. In addi-
tion, for our technique, this condition is an obligatory prerequisite
that the T-mesh should fulfill. Assuming this reasonable restric-
tion over the T-mesh, we can define easily cubic spline functions
that span spaces with desirable properties: linear independence,
C2-continuous, cubic polynomial reproduction property, nested-
ness of spanned spaces and a straightforward implementation. The
key of the strategy lies in some simple rules used for inferring local
knot vectors for each blending function.

The paper is organized as follows. Some basic concepts about
B-splines and T-meshes are given in Section 2. Section 3 includes
the general scheme of our strategy and the description of its
main stages. In Section 4 we explain in detail the key of our
technique, that is, the rules used for inferring function supports
in order to span spaces with desirable properties. In Section 5
the properties of the defined functions are given and the issue of
support overlapping and sparsity of stiffness matrix is discussed.
Computational examples of performing adaptive refinement for 2D
and 3D Poisson problems are presented in Section 6. Conclusions
are given in Section 7.

2. Basic concepts

2.1. B-spline basis functions

We start with a brief summary of the main concepts about
B-splines.

A set of B-spline basis functions Bi,p (i = 1, 2, . . . , n) of de-
gree p, inferred from a non-decreasing sequence Ξ = {ξ1, ξ2,
. . . , ξn+p+1}, called knot vector, is defined by the Cox–de Boor re-
cursion formula

Bi,0(ξ) =


1 if ξi ≤ ξ < ξi+1,
0 otherwise.

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ)+

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ).

A knot vector Ξ is called open knot vector if the first and the
last knots are repeated p+ 1 times. At each knot of multiplicity m
the basis functions are Cp−m.

A B-spline curve is defined as a linear combination of B-spline
basis functions

S(ξ) =

i∈I

Pi Bi,p(ξ),

where coefficients Pi ∈ Rs are called control points, typically s = 2
or 3.

Multivariate B-splines are defined as a tensor product of
univariate B-spline functions

Bi,p(ξ) =

d
k=1

Bik,p(ξ
k),

where ξ = (ξ 1, . . . , ξ d) and the multi-index i = (i1, . . . , id) ∈ I .
The multi-index set is defined by I = {1, 2, . . . , n1} × · · · ×

{1, 2, . . . , nd}.
A B-spline surface (solid) is defined as a linear combination of

bivariate (trivariate) B-spline functions

S(ξ) =

i∈I

Pi Bi,p(ξ),

where the control points Pi ∈ Rs (s = 2 or 3) form a control mesh.
For more details about B-splines see [16].

2.2. T-meshes and T-splines

In order to overcome the drawback of tensor product structure,
which does not allow to perform local refinement, it is necessary
to admit T-junctions in the mesh. The concept T-junction is similar
to hanging node in the classical finite element method. An axes-
aligned grid that allows T-junctions is called T-mesh. As was men-
tioned in the previous section, there are several strategies to define
tensor product spline functions over T-meshes and one of these
strategies is T-splines. The underlying idea of T-splines consists in
defining blending functions by means of a set of local knot vec-
tors instead of a global knot vector, as in the case of B-splines or
NURBS. A local knot vector for each bivariate function Bα is inferred
by traversing the T-mesh edges in both parametric directions start-
ing from a vertex vα of the mesh (the anchor), see Fig. 1. For a pair
of local knot vectorsΞ j

α =


ξ
j
1, ξ

j
2, ξ

j
3, ξ

j
4, ξ

j
5


, j = 1, 2 the bicubic

spline function Bα is defined as Bα(ξ 1, ξ 2) = B[Ξ 1
α ](ξ

1)B[Ξ 2
α ](ξ

2),

where B[Ξ j
α](ξ

j) is an univariate B-spline corresponding to the
knot vectorΞ j

α . In general, T-spline blending functions do not span
a polynomial space. Some additional restrictions on the T-mesh
configuration [5] should be satisfied in order to span a polyno-
mial spline space. If these restrictions are not verified, the T-splines
should be normalized in order to form a partition of unity. This
leads to rational blending functions: Rα(ξ 1, ξ 2) =

Bα(ξ1,ξ2)
β∈A Bβ (ξ1,ξ2)

,

where A is the index set of the basis spanned by the T-mesh. These
rational blending functions are capable of reproducing a constant
function, but, in general, cannot reproduce a polynomial of a higher
order. A T-spline approximation is constructed as a linear combi-
nation of all blending functions: S(ξ 1, ξ 2) =


α∈A Pα Rα(ξ 1, ξ 2).

3. Strategy for the construction of polynomial spline spaces
over hierarchical T-meshes

In this sectionwe describe our strategy to define tensor product
spline functions over hierarchical T-meshes. The strategy we
propose has some similarity with T-splines in as much as we
define the blending functions from local knot vectors that are
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