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a b s t r a c t

Mechanisms, defined as assemblies of dimensioned rigid bodies linked by ideal joints, can be partitioned
in three mobility states: the rigid state (where bodies can have only one position relative to each other),
the mobile state (where bodies canmove relatively to each other) and the impossible state (where bodies
dimensions and specified joints cannot lead to a feasible assembly). It is also clear that although bodies
dimensions can vary in a continuous way, assemblies may experience quite abrupt changes across those
states. This paper proposes a new approach to this problem with the goal of being able to predict the
mobility class of an assembly of arbitrary complexity, and how it can be affected by a perturbation of the
dimensions of its bodies. It does so by proposing a simple and general state transition framework including
the three above defined states and seven transitions describing how a dimensional perturbation can affect
them. Using this framework, the mobility of a mechanism is easier to capture and predict, using only
dimensional (u) and positional (p) parameters involved in an appropriate equation (F(u, p) = 0). This is
achieved by focusing on how F() behaves when u and p get perturbed, and the impact of this reaction
on the mobility state of the assembly. As a result of this more mathematic approach to the problem,
previously used notions of iso-constraint, over-constraint and paradoxical assembly, traditionally used
to describe such assemblies, can be rigorously defined and thus clarified.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We are interested in designing and manufacturing physical
mechanisms and understanding their properties in a formal set-
ting. Variations in design can be obtained by perturbing dimen-
sions, but this has an effect on the resulting mobility of the
mechanism. Therefore, starting from an initial state, the point is
to converge to a final design with the same mobility. Furthermore,
a physical mechanism can never be manufactured at nominal di-
mensions. The point is also to understand how dimensional uncer-
tainty can influence the properties of factory-made mechanisms.

The goal of this paper is to simplify definitions and investiga-
tion of properties of mechanisms. The focus is put on rigidity and
mobility, which are widely studied [1–5]. The concept of mecha-
nism used in this theory is very general since only basic semantic is
involved. Dimensional parameters noted u define the dimensions
of rigid bodies. They are set by the designer as input values of the
equation. Positional parameters noted p define relative positions of
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rigid bodies. They are the unknowns of the equation. Constraints,
joints, links, etc. complete the system by mixing u and p parame-
ters into an equation F(u, p) = 0. Only general properties of the
equation are used. How rigid bodies and constraints are involved
is not detailed, provided it results in a F(u, p) = 0 type equation
where function F features the appropriate smoothness. The theory
proposed in this paper is validwhether group theory, graph theory,
Cartesian or non Cartesian, relative or absolute modeling [3,6–14]
is used to set up the equation.

The behavioral principle is to deliberately ignore the formula-
tion of the equation and to focus on how function F behaves under
parameters perturbations. Given (u0, p0) a couple of dimensional
and positional parameters defining a mechanical assembly, mean-
ing that F(u0, p0) = 0, the question is to completely figure out
what can happen when u0 and/or p0 is perturbed. Does the assem-
bly still exist? If yes, is rigidity or mobility saved or lost?

To reach this goal, the first step is to define states of the assem-
bly. An assembly can be either ‘‘rigid’’, ‘‘mobile’’ or ‘‘impossible’’.
States definitions are inspired by considering the positional param-
eter under a fixed dimensional parameter. The second step is to de-
fine all transitions from one state to another, postulating that the
cause of a transition is a dimensional perturbation. In other words,
can an assembly switch from any state to any other state, is there
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any sink state? It is well known that mechanism design must cope
with non generic situations [1,2,15–20]. This is the reason why the
present paper thoroughly investigates the nature and the effect of
dimensional perturbations.

The landscape being dressed through the states and transitions,
sufficient conditions on function F are investigated in order to
understand how differential properties are related to behaviors.
Surprisingly, it is proven that some transitions are never possi-
ble due to smoothness and invariance properties of function F .
Furthermore, it is proven that some transitions are not accessible
under first order condition: second order conditions must be in-
vestigated. These concepts are compared to traditional definitions
like iso-constrained, over-constrained, paradoxical, thus bringing
precision and clarification. Each situation is illustrated by an actual
mechanism: either a planar rigid bars arrangement, or a crankshaft.

Section 2 recalls the classical Kutzbach–Grubler mobility index,
as it is mentioned all through the paper for comparison. Section 3
compares the present approach with combinatorial rigidity.
Section 4 defines the notion of mechanism at the appropriate level
of abstraction. Section 5 provides mathematical definitions of the
states. Section 6 defines and illustrates all possible transitions from
one state to another. The important result is related to transitions
from the ‘‘impossible’’ state. Section 7 exhaustively investigates
sufficient conditions for state and transitions based on first order
differential properties of function F . It also provides a track for
second order analysis through bifurcation theory. After the state
transition approach is set, Section 8 provides comparison with
traditional notions. Section 9 exemplifies the analysis on the very
classical crankshaft mechanism. Depending on the nature of the
crank–rod joint, this mechanism exhibits the most interesting
features presented in the theoretical sections. Finally, Section 10
concludes just before the mathematical theorems and lemmas of
the Appendix.

2. Computing mobility index

Existing formula to compute the mobility index (also named
the number of degrees of freedom) of a mechanism is known as
the Kutzbach–Grubler criterion, as thoroughly investigated in [2]
and references therein. Consider a mechanism involving nb bodies
through nj joints. Let n be the sum of degrees of freedom of joints,
each one considered independently. Then, the Kutzbach–Grubler
criterion computes the so calledmobility index δ of themechanism
by

δ = n − g(nj − nb + 1) (1)

where g is a constant number depending on the nature of the
mechanism. In fact, g is the number of degrees of freedom of an
unconstrained arbitrary body. Planar and spherical mechanisms
require g = 3. 3D mechanisms require g = 6. The mobility index
is advantageously computed by using a graph including nb nodes,
respectively associated with rigid bodies, and nj arcs, respectively
associated with joints. Each arc is labeled with the joint’s degrees
of freedom, meaning that n is the sum of all labels. This graph is
illustrated each time in the following. It is proven in [2] that (1) is
questionable inmany practical situations, and the connectionwith
the present work is interesting.

3. Combinatorial rigidity

The purpose of this section is to compare the present approach
with the combinatorial rigidity theory [3–5]. The reader who is
not familiar with this theory can skip this section. Combinatorial
rigidity investigates structures made of rigid bars connected at
their end points by spherical joints. The combinatorial aspect is the
logical graph underlying the structure: bars are modeled by edges

and joints are modeled by vertices. The theory provides criteria for
generic rigidity of such structures.

The first drawback is that it handles spherical joints only,
while many other kinds of joint are needed in mechanical design:
cylindrical, prismatic, revolute, coplanar, etc. Mechanism of Figs. 6,
8 and 18 involve prismatic joints. Assembly of Figs. 10 and 14
could be modeled by a graph made of rigid bars connected at
their end points, but thiswould artificially increase complexity and
dimensioning.

The second drawback is that combinatorial rigidity does not ex-
plicitly deal with dimensional parameters. Variables of the edge
function and its derivative, the rigidity matrix (the key feature of
the theory) are vertices coordinates of the graph structure. The
theory is not suited to investigate dimensional parameters influ-
ence. Indeed, combinatorial rigidity handles genericity from the
vertices coordinates points of view, which makes a big difference
with the present approach. For example, assemblies of Figs. 2 and 4
are generically rigid form the combinatorial theory point of view:
any small perturbation of vertices (joints) coordinates yields an as-
sembly of the same nature. From the mechanical designer point of
view, the situation is totally different. Any small perturbation of
bars lengths of assembly in Fig. 2 yields an assembly of the same
nature. It is generic in this sense. Conversely, there exists arbitrary
small perturbations of bars lengths of assembly in Fig. 4 thatmakes
it impossible. It is not generic in this sense. Bars lengths are not in-
dependent, they must fit a special relationship, as investigated by
Proposition 3. This makes a fundamental difference from the man-
ufacturing point of view.

4. Abstract mechanism

The concept of abstract mechanism is set up to deal with any
kind of mechanism, while saving the semantic of dimensional
vs. positional parameters. It should be understood as an abstract
way to model any mechanism. In the following, symbols U and P
represent parameters spaces. For sake of generality, these spaces
should bemanifolds andusedwith localmaps to finite dimensional
euclidean spaces. Nevertheless, for simplicity and since local
analysis is performed all through the paper, parameters spaces
are defined as finite dimensional spaces. The only exception is
Proposition 1 where the nature of spaces U and P is particularly
considered.

Definition 1. An abstract mechanism is a four-tuple M =

(U, P, E, F)where U = Rn is the space of dimensional parameters,
P = Rm is the space of positional parameters, E = Rk and F :

U × P → E is a smooth function.

Function F captures the nature of the mechanism. It involves
dimensional and positional parameters according to rigid bodies
and joints. Function F is supposed to be twice continuously
differentiable despite it is generally analytic. Furthermore, the
derivative of F with respect to all its variables is supposed to be full
rank. The equation of the mechanism is then F(u, p) = 0, which is
a shortcut to deal with k scalar equations.

Definition 2. An assembly of the abstract mechanism M is a
couple (u, p) ∈ U × P such that F(u, p) = 0. The set of all
assemblies is noted

Z = {(u, p) ∈ U × P, F(u, p) = 0}.

Definition 2 makes the connection with the classical notion of
workspace. This concept, which is very popular in robotics [21],
is used to describe the space of feasible positions of mobile
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