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h i g h l i g h t s

• Derivation of equilibrium equations for loaded shell structures with a varying isotropic stress.
• The application of the finite element method for the numerical implementation.
• The introduction of a new particle method for the numerical implementation.
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a b s t r a c t

The best known isotropic membrane stress state is a soap film. However, if we allow the value of the
isotropic stress to vary frompoint to point then the surface can carry gravity loads, either as a hanging form
in tension, or as a masonry shell in compression. The paper describes the theory of isotropic membrane
stress under gravity load and introduces a particlemethod for its numerical simulation for the form finding
of shell structures.
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1. Introduction

In conventional structural design the geometry of a structure
is first chosen more or less arbitrarily and then analyzed to estab-
lish howwell it performs. It is thenmodified to improve its perfor-
mance and this cyclic process is continued until the designers are
satisfied. Michael Brawne [1] likened this cyclic optimization pro-
cess (as applied to architectural design) to Karl Popper’s theory of
the scientific method. The optimization process can be automated
using computers using techniques including genetic algorithms [2]
and simulated annealing [3].

Form finding techniques rely on physical or numerical models
to automatically generate the form. The model must have differ-
ent, but analogous, properties to the structure being designed and
classic examples include Antoni Gaudí’s hanging models for the
masonry vaults of the Church of Colònia Güell [4] and Frei Otto’s
soap filmmodels for fabric, cable net and gridshell structures. Form
finding techniques do not produce an ‘optimum form’, but a ‘good
form’. However in practice the difference between optimization
and form finding is arbitrary—one would expect form finding to be
taken through a number of ‘optimization’ cycles involving analysis
of the structure in its proposed final form in masonry or fabric.
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Masonry shells can only work in compression and a number of
numerical techniques have been developed for finding their geom-
etry to achieve a specified stress state under dead load [5–12]. In
this paper we propose the use of a variable isotropic stress state
where the membrane stress is uniform in all directions with no
shear stress, but the value of the stress varies from point to point.

There is no particular reason why the compressive membrane
stress should be isotropic, but it could be argued that an isotropic
stress is in some ways optimum. This mirrors the argument that
a minimal surface is the best shape for a cable net or fabric struc-
ture. Certainly we want to avoid loss of compression in a masonry
structure leading to cracking or loss of tension in a tension struc-
ture leading to wrinkling. Thus we want the radius of Mohr’s circle
for stress [13] to be less than the mean stress. The simplest case is
to set the radius of Mohr’s circle equal to zero corresponding to an
isotropic stress. Note thatMohr’s circle construction can be applied
to any symmetric second order tensor, for example surface curva-
ture [14].

Imposing the condition that the stress state should be isotropic
also has the effect of avoiding undue stress concentrations. In gen-
eral this is a good thing, but there are circumstances where one
wants a concentration of stress or force, for example at a point sup-
port or at a boundary arch. However a boundary arch can be mod-
elled as a separate entity leaving the state of stress in the rest of
the shell isotropic.
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Wewill use the expression ‘surface tension’ to denote the value
of the isotropic membrane stress expressed as a force per unit
length. If the stress is compressive, then the surface tension is
negative. It is often thought that the surface tension in a soap film
is constant, but if this were the case it would not be possible for a
soap film to carry its own weight. A vertical soap film must have a
higher surface tension at the top than at the bottom. The situation
is analogous to hydrostatic pressure thatmust increasewith depth.

Even without gravity surface tension must vary with film
thickness. Imagine a soap filmwith slight fluctuations in thickness.
The surface tension must be greater where the film is thinner to
pull fluid from thicker areas to ensure stability [15].

In the following sections we present the theoretical analysis of
an isotropic membrane stress under gravity loads.We then give an
example of the solution of the equations using the finite element
method. Finally we formulate and illustrate the use of a particle
method for numerical simulations.

2. Theoretical analysis

2.1. Geometric preliminaries

The methods described in Sections 2.1 and 2.2 are based on
those in Green and Zerna [16], but with some changes in notation.

Consider a surface described by the position vector
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i, j and k are unit vectors in the directions of the Cartesian axes
and θ1 and θ2 are the surface parameters or coordinates replacing
the u and v which are often used. Note that the 1 and 2 are not
exponents.

The covariant base vectors are
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in which i is equal to 1 or 2. g1 and g2 are tangent to the surface in
the directions of increasing θ1 and θ2 respectively. Note that they
are in general not unit vectors, nor are they perpendicular to each
other.

The components of the metric tensor are

gij = gi · gj (3)

and the square of the distance between adjacent points on the
surface is
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The summations in the right hand side of this expression are
implied by the Einstein summation convention. This expression for
δs2 is known as the first fundamental form and therefore gij are also
known as the coefficients of the first fundamental form.

The quantity

g = g11g22 − g2
12 (5)

and the unit normal,

n =
g1 × g2

|g1 × g2|
=

g1 × g2
√
g

. (6)

Note that g is not a scalar in that it is a property of the coordinate
system, rather than something with physical meaning.

The contravariant base vectors gj also lie in the plane of the
surface. They are defined by

gi · gj
= δ

j
i

n · gj
= 0

(7)

in which the Kronecker deltas, δj
i = 0 if i ≠ j and δ

j
i = 1 if i = j.

Thus g1 is perpendicular to both g2 and n and its magnitude is such
that g1 · g1

= 1.
The contravariant components of the metric tensor are

g ij
= gi

· gj (8)

and a vector can be expressed as

v = vigi + vn = vigi
+ vn (9)

in which

vi
= g ijvj

vi = gijvj.
(10)

Again note the use of the summation convention in (9) and (10).
Finally, the coefficients of the second fundamental form are

bij = bji =
∂gi

∂θ j
· n =

∂gj
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· n = −gj ·

∂n
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and the second fundamental form itself is

δr · δn = −bijδθ iδθ j. (12)

bij tell us about how the direction of the normal changes as we
move about on the surface, in other words, about the curvature of
the surface.

bij and gij are not independent, they are linked by the Gauss–
Codazzi–Mainardi equations which ensure that the surface fits
together.

2.2. The membrane equilibrium equations for shell and tension struc-
tures

We are now in a position to define the membrane stress tensor
σ = σ ijgigj by

δf = ϵikσ
ijgjδθ

k (13)

in which δf is the element of force crossing the imaginary cut
δr = gkδθ

k. ϵ12 = −ϵ21 =
√
g and ϵ11 = 0 and ϵ22 = 0 are

the components of the Levi-Civita permutation pseudotensor. Note
that we are not yet making the assumption that the membrane
stress is isotropic.

Eq. (13) makes a bit more sense when written out in full:
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especially when compared to the equivalent relationship for plane
stress in two dimensions in Cartesian coordinates:
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Equilibrium of moments about the surface normal tell us that
the stress tensor is symmetric, σ 12

= σ 21.
Adding the forces on a small quadrilateral of shell we have
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where w is the load per unit surface area. Thus
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