Computer-Aided Design 58 (2015) 123-131

Contents lists available at ScienceDirect ‘C@
Computer-Aided Design e

journal homepage: www.elsevier.com/locate/cad

—

@ CrossMark

Correct resolution rendering of trimmed spline surfaces”

Ruijin Wu *, Jérg Peters ™
University of Florida, United States

HIGHLIGHTS

Tight estimates relate domain resolution to screen resolution of trimmed surfaces.
Based on the estimates, sub-pixel accuracy of a display algorithm is proven.

The algorithm has been implemented within the standard graphics pipeline.

The implementation enables interactive editing of trimmed surfaces.

The implementation has a small memory footprint.

ARTICLE INFO ABSTRACT

Keywords: Current strategies for real-time rendering of trimmed spline surfaces re-approximate the data, pre-
'é‘n;nmmg process extensively or introduce visual artifacts. This paper presents a new approach to rendering
AE):cllrjlreate trimmed spline surfaces that guarantees visual accuracy efficiently, even under interactive adjustment
Real-time of trim curves and spline surfaces. The technique achieves robustness and speed by discretizing at a near-

minimal correct resolution based on a tight, low-cost estimate of adaptive domain griding. The algorithm
is highly parallel, with each trim curve writing itself into a slim lookup table. Each surface fragment then
makes its trim decision robustly by comparing its parameters against the sorted table entries. Adding
the table-and-test to the rendering pass of a modern graphics pipeline achieves anti-aliased sub-pixel
accuracy at high render-speed, while using little additional memory and fragment shader effort, even

Scan density

during interactive trim manipulation.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A standard approach to designing geometry in computer aided
design is to “overfit”, i.e. create spline surfaces that are larger
than needed and subsequently trim the surfaces back to match
functional constraints or join to other surfaces (see Fig. 1). This
approach persists both for historical reasons and for design sim-
plicity: for historical reasons in that overfitting and trimming pre-
dates alternative approaches such as subdivision surfaces[1,2] and
finite geometrically-smooth patch complexes (see e.g. [3,4]); for
practical reasons, in that it is often more convenient to control the
shape of a signature piece in isolation than when constraints have
to be taken into consideration. For example, a car’s dashboard can
be prepared in one piece without consideration of cut-outs for in-
strumentation and the steering column.

“ This paper has been recommended for acceptance by Dr. Vadim Shapiro.
* Corresponding authors.
E-mail addresses: ruijin@cise.ufl.edu (R. Wu), jorg@cise.ufl.edu (J. Peters).

http://dx.doi.org/10.1016/j.cad.2014.08.012
0010-4485/© 2014 Elsevier Ltd. All rights reserved.

The prevailing practice in computer aided design environments
is to generate and display a fixed-resolution triangulation on
the CPU and transfer it to the GPU. This process interrupts the
design process and can yield unsatisfactory results as closeups
reveal a jagged or otherwise incorrect approximation. Conversely,
an overly fine triangulation wastes resources: there is no need
to highly resolve a complex trim curve when the corresponding
surface measures only a few pixels on the screen.

The computer graphics community has developed a number
of clever techniques, reviewed in Section 2, to deliver real-time
display of trimmed spline surfaces. The present paper advances the
state-of-the-art by carefully predicting how fine an evaluation of the
trim curves results in correct trim decisions at screen resolution. This
tight prediction makes it possible to construct, as a prelude to each
modified view or model rendering pass, a slim and adaptive trim-
query acceleration table that supports a light-weight per-fragment
trim test. This simple add-on to any rendering pass is efficient
enough to allow interactive trim-curve editing.

Overview. Section 2 reviews existing techniques for fast rendering
of trimmed spline surfaces. Section 3 reviews basic concepts and


http://dx.doi.org/10.1016/j.cad.2014.08.012
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.08.012&domain=pdf
mailto:ruijin@cise.ufl.edu
mailto:jorg@cise.ufl.edu
http://dx.doi.org/10.1016/j.cad.2014.08.012

124 R. Wu, J. Peters / Computer-Aided Design 58 (2015) 123-131

Fig. 1. Geometric design with trimmed surfaces. The red spline pieces need to be trimmed away. See also Figs. 2 and 16. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

establishes notation. Section 4 explains how correct resolution can
be determined. Section 5 explains how to build and use the trim-
query acceleration table. Section 6 measures the performance of a
full implementation.

2. Real-time rendering of trimmed surfaces and related tech-
niques

The trim decision is to determine to which side, of a set of trim
curves, lies the uv-pre-image of a pixel. The underlying challenge is
the same as when determining the fill region of a planar decal [5]—
except that in planar filling, the accuracy of rendering is measured
in the uv-plane, while for trimmed surfaces, the accuracy is mea-
sured in screen space, i.e. after applying the non-linear surface map
followed by projection onto the screen.

A straightforward approach, used in 2D vector graphics [6, Sec-
tion 8.7], is to ray-test: each pixel's uv-pre-image in the domain
sends a ray to the domain boundary to determine the number of
intersections (and possibly the intersection curve orientation). The
intersections decide whether the fragment is to be discarded. For
example, Pabst et al. [7] test scan-line curve intersection directly in
the Fragment Shader. Direct testing without an acceleration struc-
ture is impractical since the number and complexity of intersec-
tions can be unpredictably high so that robustness and accuracy
are difficult to assure within a fixed time. It pays to pre-process the
trim curves and map them into a hierarchical search structure in
order to localize testing to a single trim curve segment. For exam-
ple, Schollmeyer et al. [8] break the segments into monotone pieces
and test scan-line curve intersection in the Fragment Shader by ro-
bust binary search. This pre-processing is view-point independent
but becomes expensive for interactive trim-curve manipulation.

An alternative is to generate a trim texture: the uv-pre-image of
each fragment indexes into a texture that returns whether the
point is to be trimmed or not. Such a trim texture can be generated
in a separate rendering pass, using the stencil buffer [9]. The
trim-test is highly efficient, requiring only a single texture look-
up to classify a domain point. However trim textures need to be
recomputed for every viewpoint change and the separate pass can
noticeably lower overall performance as each segment of every
trim curve generates and atomically inserts a triangle into the
stencil buffer. Moreover, the trim-texture represents a uniform,
limited resolution sampling of the uv-domain. Projective fore-
shortening must be accounted for separately: when rendering
a curved surface in 3-space, the non-uniform distortion of the
domain caused by the non-linear map of the surface followed by
perspective projection can result in low render quality even where
the texture resolution is high.

Another pre-processing choice is to convert the piecewise
rational trim curves into an implicit representation, via resultants

(see e.g. [10-12]). Evaluating the resultant will generate a signed
number and the sign can be used to determine whether a pixel
is to be trimmed. In principle, this yields unlimited accuracy.
However, there are several caveats to this approach. First, the use
of resultants increases the degree and the number of variables. The
coefficients of the implicit representation are typically complicated
expressions in terms of the coefficients of the trim curve segments.
Therefore the evaluation in the Fragment Shader can be expensive
even if the derivation of the implicit expression is done off-
line prior to rendering. There are more efficient approaches than
full implicitization, e.g. [13]. While useful for ray-tracing, these
expressions do not presently yield a signed test as required
for trimming. Second, implicitization converts the entire rational
curve, not just the required rational piece. Use of resultants
therefore requires a careful restriction of the test region, for
example by isolating bounding triangles in the domain that contain
a single indicator function whose zero level set represents the
trim. Determining such restrictions is in general tricky since the
implicit can have extraneous branches. For conics, the conversion
expressions are sufficiently simple and for fixed shapes, such as
fonts, determining bounding triangles can be done offline once and
for all [14]. For less static scenarios, also pre-processing of conics
and triangulation of the domain is not easily parallelized. Stencil
buffers can avoid careful triangulation [5] but the fixed resolution
inherits the challenges of texture-based trimming.

Computing the trim curves from CSG operations addresses a
related but somewhat different problem than rendering. Here the
trim curves (exact intersection pre-images) are not given. For
simple CSG primitives such as quadrics the render decision can be
based on an implicit in/out test. For more complex B-reps, faceted
models are compared and proper resolution of the B-rep into
facets remains a challenge. Practical implementations use stencil
operations, depth and occlusion testing [15,16].

3. Definitions and concepts

Coordinates and projection. In the OpenGL graphics pipeline
[17, Section 13.6], the non-orthogonal projection P

X Xc Py O 0 0 X
Yy Yl =0 P2 O O y
z Zc '_ 0 0 P33 Py z
1 We 0 0o -1 0 1

maps camera coordinates (x, y, z, 1)7 with the camera is at the
origin pointing in the negative z-direction, to clip coordinates
(Xc, Y, Zc, we)'. The entries P33 = (Z — 2)/(Z + z) and P3, =
2zz/(z — z) define two planes at depth z (near) and z (far) such
that any geometry with depth outside the range [z, z] is clipped.



Download English Version:

https://daneshyari.com/en/article/6876553

Download Persian Version:

https://daneshyari.com/article/6876553

Daneshyari.com


https://daneshyari.com/en/article/6876553
https://daneshyari.com/article/6876553
https://daneshyari.com

