
Computer-Aided Design 58 (2015) 132–140

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Efficient direct rendering of deforming surfaces via shared
subdivision trees✩

Fuchang Liu a,c,∗, Tobias Martin b, Sai-Kit Yeung c, Markus Gross b

a Hangzhou Normal University, Hangzhou, China
b ETH Zurich, Switzerland
c Singapore University of Technology and Design, Singapore

h i g h l i g h t s

• We present Shared Subdivision Trees (SST) to rasterize implicit surfaces on GPUs.
• We address the problem of efficiently rendering implicit surfaces which undergo a nonlinear deformation throughout the rendering process.
• Wemap Shared Subdivision Trees well to parallel computing platforms such as CUDA.

a r t i c l e i n f o

Keywords:
Isosurface visualization
GPU rendering
Computational geometry and object
modeling

a b s t r a c t

In this paper, we present a subdivision-based approach to rasterize implicit surfaces embedded in volu-
metric Bézier patches undergoing a nonlinear deformation. Subdividing a given patch into simpler patches
to perform the surface rasterization task is numerically robust, and allows guaranteeing visual accuracy
even in the presence of geometric degeneracies. However, due to its memory requirements and slow
convergence rates, subdivision is challenging to be used in an interactive environment. Unlike previous
methods employing subdivision, our approach is based on the idea where for a given patch only one sub-
division tree is maintained and shared among pixels. Furthermore, as the geometry of the object changes
from frame to frame, a flexible data structure is proposed to manage the geometrically varying Bézier
patches. The resulting algorithm is general and maps well to parallel computing platforms such as CUDA.
We demonstrate on a variety of representative graphics and visualization examples that our GPU scheme
scales well and achieves up to real-time performance on consumer-level graphics cards by guaranteeing
visual accuracy.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Deforming B-spline volumes with embedded scalar fields fre-
quently occur in a variety of computer graphics and engineering
applications. For instance, in free-form deformation [1] an implicit
surface of a scalar field is deformed by deforming the geometry of
its associated B-spline bounding volume. B-spline volumes are also
a fundamental primitive in isogeometric analysis [2] where they
are used to represent the geometry of a physical object. Physical

✩ This paper has been recommended for acceptance by Dr. Vadim Shapiro.
∗ Correspondence to: Digital Media and HCI Research Center, Hangzhou Institute

of Service Engineering, Hangzhou Normal University, Yuhang Qu Haishu Road 58,
Hangzhou 311121, China.

E-mail addresses: liufububai@gmail.com, liufu@ewha.ac.kr (F. Liu),
martint@inf.ethz.ch (T. Martin), saikit@sutd.edu.sg (S.-K. Yeung),
grossm@inf.ethz.ch (M. Gross).

analysis is applied directly to the B-spline volume representation,
where the analysis result is represented as an associated attribute.
Depending on the simulation scenario, the geometry of the rep-
resentation may undergo shape changes. For instance, an elastic
body deforms when external forces are applied, where stress is an
attribute of the deforming object.

In this paper, we address the problem of efficiently rendering
implicit surfaces which undergo a nonlinear deformation through-
out the rendering process. The deformation is performed on a vol-
umetric representation, which can be converted into a set of Bézier
volumes. While the topology of the deforming surface may remain
the same throughout the animation, its scale may change non-
uniformly from frame to frame. Extraction- and sampling-based
methods are not only challenged by the changing surface proper-
ties and the dynamic volumetric deformations, but also by the re-
construction of all the features present in the implicit surface (for
instance, see thin features in Fig. 1).

http://dx.doi.org/10.1016/j.cad.2014.08.005
0010-4485/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cad.2014.08.005
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.08.005&domain=pdf
mailto:liufububai@gmail.com
mailto:liufu@ewha.ac.kr
mailto:martint@inf.ethz.ch
mailto:saikit@sutd.edu.sg
mailto:grossm@inf.ethz.ch
http://dx.doi.org/10.1016/j.cad.2014.08.005


F. Liu et al. / Computer-Aided Design 58 (2015) 132–140 133

Fig. 1. Deformation sequence of an isosurface of a tri-quintic algebraic function.
Methods to extract the implicit surface, such as Marching Cubes, are challenged
because of the nonlinear distortions and thin surface features.

Given this scenario, subdividing the Bézier patches into simpler
patches is key. Traditionally, a subdivision-based approach builds
a subdivision tree for each pixel, where sub-patches in the tree are
kept and only subdivided further if they potentially contain a piece
of the surface overlapping with the pixel. In the limit, the leafs of
the subdivision tree constitute to that piece of the surface, passing
through the pixel. However, subdivision is computationally expen-
sive and only converges linearly to a solution. Therefore, instead
of subdividing the patch to pixel size, it is only subdivided un-
til all intersections can be determined using the Newton–Raphson
method. Then, the local subdivision tree is discarded. In order to re-
duce the size of local sub-division trees, a pre-subdivision stage [3]
is employed: before rendering takes place, the patch is first subdi-
vided into a set of simpler patches. The main drawback with this
strategy is that a hierarchical data structure has to be maintained,
and has to be rebuilt whenever the geometry changes. This poses
additional challenges tomap such a scheme efficiently to GPU. Fur-
thermore, the hierarchy is view independent, i.e., it may consist of
too many (or too few) levels, and also patches which are occluded
from the current view.

Main contribution: we present a novel concept for GPU, called
Shared Subdivision Trees (SST), to rasterize implicit surfaces rep-
resented by multiple Bézier patches undergoing a nonlinear de-
formation during rendering. Conceptually, as illustrated in Fig. 2,
for a given patch, a single subdivision tree is maintained which is
shared among pixels. A patch in the subdivision tree is only subdi-
vided further if requested by a screen pixel, which eliminates the
redundant subdivision work. The proposed method can be seen as
moving the pre-subdivision stage into the rendering stage, where
the subdivision tree of a given patch is built by exploiting the high
parallelism of current GPUs. The visibility problem is solved by
a conventional sweep and prune method which allows to handle
datasets as they occur in practice. We demonstrate on a variety of
representative examples that our scheme is computationally effi-
cient and yields interactive and for some examples even real-time
frame rates. In addition, we verify that our scheme scales well with
respect to memory requirement and rendering speed.

The outline of this paper is as follows. After discussing the re-
lated work in Section 2, the mathematical framework used for
this work is introduced in Section 3. The proposed algorithm is
described in Section 4 and its implementation is discussed in
Section 5. Then, three applications and associated studies are pre-
sented in Section 6.1. Finally, we evaluate the efficiency of our pro-
posed method in Section 6.2, and conclude the paper in Section 7.

2. Previous work

Direct renderingonuniformgrids: there is a vast body ofwork
to directly render implicit surfaces of volumetric scalar fields. A
variety of highly efficient methods exist when the scalar field in
world space can be described by a trivariate or piecewise trivari-
ate polynomial. Methods in this category date back to the work by
Rockwood [4] which computes univariate contours from a Bézier
volume. Roots of these contours correspond to points on the iso-
surface. A related approach presented in [5] converts the algebraic

function along the ray into Bernstein form to efficiently and ro-
bustly determine all intersections between the ray and the im-
plicit surface. Knoll et al. [6] present an approach to render implicit
surfaces of algebraic functions using interval arithmetic achieving
real-time frame rates. Approaches falling into the same category,
but which are based on sampled volume data are [7–9]. More re-
cently, Liu et al. [10] present an isosurface rasterization approach
exploiting cache coherency to further speed up rendering.

Due to the polynomial nature of the scalar field, the scalar field
along a viewing ray can be represented in closed form. This prop-
erty results in a lower memory footprint making it easier to solve
the problem on the GPU. However, in our scenario, the volume em-
bedding the scalar field undergoes a nonlinear deformation (Fig. 1
and for more examples Figs. 7 and 8). In this case, the scalar field
consists of a highly nonlinear term which makes it impossible to
express the scalar function along the ray analytically. Because of
that, it is unclear how to extend the methods above to also work
efficiently in this scenario. In this paper, we present an efficient
rasterization method which robustly renders isosurfaces embed-
ded in deformed objects.

Extraction-basedmethods: among the first methods to render
scalar data embedded in deformed volumes is [11]. The method is
based on an isosurface sampling approach similar to [12]: points
are iteratively projected onto the isosurface and the surface is ren-
dered using a point-based rendering system such as [13]. High vi-
sual accuracy can be achieved following this strategy. However,
determining a point sampling which guarantees visual accuracy
is difficult. These methods generally tend to oversample the im-
plicit surface in order to reconstruct thin or smaller features as the
one shown in Fig. 2. Extraction based methods face similar prob-
lems. Such an approach first extracts the implicit surface using a
method such asMarching Cubes [14], orMarching Tetrahedra [15].
Then, the extracted triangle mesh approximating the smooth im-
plicit surface is rendered.While extraction can be executed very ef-
ficiently, the smooth representation first has to be discretized into
a linear format. This requires the sampling of the volumetric patch.
Efficiently generating a sampling such that the extracted triangle
mesh is accurate up to image resolution is an open problem. Note
that, all these challenges are amplified when the implicit surface
undergoes a nonlinear deformation every frame.

Ray-sampling-based methods: given a ray passing through a
pixel and a deformed volumetric patchwith embedded scalar field,
an intersection of the ray with the implicit surface is computed in
two steps: (1) determine the entry and exit point of the ray into
the patch; and (2) perform root finding on these bounds to iden-
tify where the ray intersects the implicit surface. Since the scalar
function cannot be written in closed form, as discussed above, the
latter step requires sampling of the scalar field along the ray,where
for each sample, the inverse function has to be evaluated using
a numerical method. For instance, [16,17] adaptively sample this
function to compute a polynomial interpolant based on a Legendre
basis which can be arbitrarily close to the solution. Similarly, [18]
present a GPU ray-caster using a frequency based adaptive sam-
pling approach to account for high variations along the ray. To
achieve interactive frame rates, the method stores the volumetric
patches in a grid.

Ray-sampling methods, such as the ones discussed above, as-
sume that the mapping between the reference element to the de-
formed patch is bijective. However, this is often not the case in
practice. For instance, in physically based animation [19], patches
undergoing a nonlinear deformation may self-intersect or even in-
vert. This results in zero Jacobians, where at these locations the
mapping is not bijective and therefore, a numericalmethod such as
Newton–Raphson to compute the inverse cannot be used. This type
of data presents severe stability and convergence issues for the
rendering approaches mentioned above. Furthermore, boundaries



Download English Version:

https://daneshyari.com/en/article/6876554

Download Persian Version:

https://daneshyari.com/article/6876554

Daneshyari.com

https://daneshyari.com/en/article/6876554
https://daneshyari.com/article/6876554
https://daneshyari.com

