
Computer-Aided Design 58 (2015) 173–178

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Control vectors for splines✩

Jiří Kosinka a,∗, Malcolm A. Sabin b, Neil A. Dodgson a

a Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom
b Numerical Geometry Ltd., 19 John Amner Close, Ely, Cambridge CB6 1DT, United Kingdom

h i g h l i g h t s

• We extend traditional splines based on control points by incorporating control vectors.
• Our paradigm allows combining several spline constructions into one formulation.
• We can model curves and surfaces that are not possible with existing techniques.

a r t i c l e i n f o

Keywords:
Spline
Curve
Surface
Subdivision
Control vector
Modelling

a b s t r a c t

Traditionally, modelling using spline curves and surfaces is facilitated by control points. We propose
to enhance the modelling process by the use of control vectors. This improves upon existing spline
representations by providing such facilities as modelling with local (semi-sharp) creases, vanishing and
diagonal features, and hierarchical editing. While our prime interest is in surfaces, most of the ideas
are more simply described in the curve context. We demonstrate the advantages provided by control
vectors on several curve and surface examples and explore avenues for future research on control vectors
in the contexts of geometric modelling and finite element analysis based on splines, and B-splines and
subdivision in particular.

© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Splines have their roots in the lofting technique used in the
shipbuilding and aircraft industries throughout the first half of
the 20th century. The first mathematical reference to the notion
of splines is accredited to the work of Schoenberg [1] on piece-
wise polynomial approximation. Later, De Casteljau, Bézier, and De
Boor [2] contributed invaluably to the development of splines and
B-splines in particular; see [3] for the full story.

In the curve case, the modern understanding of a spline can be,
in its generality, captured mathematically by

c(t) =

n
i=1

Bi(t)Pi; t ∈ [a, b], (1)

where Pi are control points forming a control polygon and Bi(t)
form a set of blending functions that satisfy certain properties

✩ This paper has been recommended for acceptance by Dr. Vadim Shapiro.
∗ Corresponding author.

E-mail addresses: jiri.kosinka@cl.cam.ac.uk (J. Kosinka),
malcolm.sabin@btinternet.com (M.A. Sabin), neil.dodgson@cl.cam.ac.uk
(N.A. Dodgson).

required by a particular application. To make the spline curve c(t)
well-defined geometrically (i.e., in order to guarantee shape inde-
pendence of the choice of origin), it is required that

n
i=1 Bi(t) ≡ 1

over [a, b]. In other words, the blending functions have to form
a partition of unity. A desired property in some applications (such
as finite element analysis) is linear independence of the blending
functions; Bi(t) then form a basis and are called basis functions. In
the context of analysis, partition of unity can be relaxed to

∃ci such that
n

i=1

Bi(t)ci ≡ 1. (2)

A spline curve is generally composed of many pieces of a
particular type (e.g., polynomial, rational, trigonometric) joined
together at knots with a certain continuity. The most popular
examples include B-splines [2] (of which Bézier curves are a spe-
cial case), trigonometric splines [4], interpolating splines [5], and
subdivision curves [6].

The above approach can be easily generalised to surfaces. For
example, in the tensor-product case we have

s(u, v) =

n
i=1

m
j=1

Bi(u)Bj(v)Pi,j; (u, v) ∈ [a, b] × [c, d], (3)

http://dx.doi.org/10.1016/j.cad.2014.08.028
0010-4485/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

http://dx.doi.org/10.1016/j.cad.2014.08.028
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.08.028&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:jiri.kosinka@cl.cam.ac.uk
mailto:malcolm.sabin@btinternet.com
mailto:neil.dodgson@cl.cam.ac.uk
http://dx.doi.org/10.1016/j.cad.2014.08.028
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


174 J. Kosinka et al. / Computer-Aided Design 58 (2015) 173–178

where Pi,j form a rectangular control mesh and the univariate
blending functions are reused. To be able to cover also triangular
patches, volumetric splines, and other flavours of splines including
subdivision, we adopt the general notation

c(t) =


i∈I

Bi(t)Pi; t ∈ Ω, (4)

where I is an appropriately chosen index set and Ω is a suitable
parameter space spanned by t. The functions Bi(t) form a set of
blending functions that partition unity or satisfy (2) over Ω .

2. Control vectors for splines

Imagine a scenario where one needs to edit a local detail on a
spline, but the blending functions cannot capture it since they are
too coarse (with too large a support). Ideally, one would simply
like to be able to add a single new control point associated with a
blending function of a desired shape and support. However, due to
the form of (4) and the partition of unity constraint, adding a new
desired blending function is either impossible or difficult as other
functions have to be modified as well while keeping the shape of
the spline unmodified.

In the case of B-spline curves, one can use knot insertion to
refine the space spanned by the B-splines locally. The situation
gets much more complicated in the tensor-product surface
setting as local refinement is not possible due to the rectangular
structure. Several constructions have been proposed to deal
with this: T-splines [7], hierarchical B-splines [8,9], truncated
B-splines [10], LR B-splines [11], and T-meshes [12]. In these
constructions, local refinement is possible as T-junctions are
allowed. However, it proved difficult to maintain partition of unity
and linear independence for these constructionswithout imposing
restrictions on refinement strategies or moving to the rational
setting by normalisation. In the case of THB-splines [10], basis
functions are ‘truncated’ to maintain both properties, but at the
expense of introducing functions that may have more than one
maximum. While acceptable in analysis, this is undesirable in
modelling as a control point’s influence is no longer intuitive.

In the context of finite element analysis, (1) was extended to

c(t) =

n
i=1

Bi(t)Pi +

n
i=1

f (t)Bi(t)Vi (5)

with some function f (t) well suited for a particular applica-
tion/problem (a typical example is f (t) = et ) and both Pi and Vi
are treated as degrees of freedom. This approach and its generalisa-
tionswere introduced in [13,14], and called Partition ofUnity Finite
Elements and Extended Finite Elements, respectively. In the latter
case, the modification was motivated by introducing cracks (f (t)
would be a discontinuous function) without having to remesh.
Recently, due to the popularity of Isogeometric Analysis (IgA for
short; see [15]), such modifications are ever more important.

These modifications, however, break the partition of unity
property and cannot be used for modelling directly, as also re-
quired by IgA. To amend the situation and to address the require-
ments in modelling and analysis, we propose to generalise (4) and
(5) to

c(t) =


i∈I

Bi(t)Pi +

j∈J

Cj(t)Vj; t ∈ Ω, (6)

where


i∈I Bi(t) ≡ 1 still holds andPi are control points, butVj are
understood as control vectors. While this may seem as semantics
only, the transition from control points to control vectors allows
the functions Cj(t) to be incorporated in the spline definition; the
control vectors do not transform as points, but as displacements.
Thus, the partition of unity property no longer applies to the set

Fig. 1. A degree four spline curve with 12 control points and two non-zero
control vectors (red arrows). The associated basis functions are shown in black. The
unmodified underlying spline is shown in grey for reference. Control vectors are
logically associated with knots. To express the same curve using standard quartic
B-splines would require 18 control points (yellow). Each non-zero control vector
would give rise to d − 1 = 3 extra control points. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

of Cj(t). However, since (2) still applies, this is not a problem for
analysis.

Considering a spline as a sum of weighted points plus a sum of
weighted control vectors, (6), is a paradigm that opens up a wealth
of possibilities with minimal increased cost, as we demonstrate
below. For future use, we denote B the collection of Bi, i ∈ I , and C
the collection of Cj, j ∈ J .

In modelling and other applications, one would associate
control vectors with desired blending functions and set their
magnitudes to zero. This guarantees that the underlying spline
given by


i∈I Bi(t)Pi is recovered and the user (or an error

estimator in the case of analysis) can then adjust control vectors to
fine-tune the resulting shape or approximation. Moreover, several
levels of control vectors can be added to obtain a hierarchical
structure that facilitates multiresolution editing; see Fig. 4 for an
example. For visualisation and demonstrative purposes, we focus
on (local) sharp creases and multiresolution editing throughout
this paper, but it should be emphasised that the full scope of our
paradigm based on control vectors is not limited to these.

In modelling, the convex hull property is advantageous in
some situations. In analysis, functions in B and C are required to
be linearly independent. However, since the form of (6) is very
general, the questions of linear independence and convex hulls
need to be investigated on a case-by-case basis.

While control vectors can be applied in any spline scenario
covered by (6), we focus only on the most important families used
in modelling, animation, and IgA: B-splines (Sections 3 and 5) and
subdivision based on B-splines (Section 4).

3. Control vectors for B-spline curves

We now investigate (6) for the case of B-spline curves. In the
univariate case, we have t = t and Ω = [a, b] in (6). We specialise
the basis functions to B-splines [2], but any type of splines can be
employed (polynomial, rational, trigonometric, etc.) with B and C
from the same or different families. While the degrees of B and C
can be in general different, it is sensible to assume that both sets
consist of B-splines of one degree d. Similarly, the knots of B and C
may be completely unrelated, but it is reasonable to consider only
cases where at least some of the knots are aligned.

Fig. 1 shows an example of a degree 4 spline curve, where
the knots of B and C are shared. The Bi are degree four B-splines



Download English Version:

https://daneshyari.com/en/article/6876558

Download Persian Version:

https://daneshyari.com/article/6876558

Daneshyari.com

https://daneshyari.com/en/article/6876558
https://daneshyari.com/article/6876558
https://daneshyari.com

