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h i g h l i g h t s

• We reduce the computation time dramatically by solving convex optimization problem.
• We can simultaneously find a good combination of the knot number and knot locations.
• The algorithm has less knots with good fitting performance compared to other methods.
• We can recover the ground truth knots when data is sampled enough from a B-spline.
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a b s t r a c t

Curve fitting with splines is a fundamental problem in computer-aided design and engineering. However,
how to choose the number of knots and how to place the knots in spline fitting remain a difficult issue.
This paper presents a framework for computing knots (including the number and positions) in curve fit-
ting based on a sparse optimizationmodel. The framework consists of two steps: first, from a dense initial
knot vector, a set of active knots is selected at which certain order derivative of the spline is discontinu-
ous by solving a sparse optimization problem; second, we further remove redundant knots and adjust the
positions of active knots to obtain the final knot vector. Our experiments show that the approximation
spline curve obtained by our approach has less number of knots compared to existing methods. Particu-
larly, when the data points are sampled dense enough from a spline, our algorithm can recover the ground
truth knot vector and reproduce the spline.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Curve fittingwith splines is a traditional and fundamental prob-
lem in many engineering practices. In Computer Aided Design
(CAD) and Geometric Modeling, curves are fitted with splines to
reconstruct geometric models from measurement data [1–4]. In
signal processing and image processing, splines are often adopted
to process noisy signals or to approximate complicated functions
[5,6].

The intuitive idea of curve fitting with splines is to formulate
it as a least-square problem when knots are fixed. However, the
fitting result is not always satisfactory. Actually, it has long been
known that freeing knots in fitting improves the result dramati-
cally [7–10]. But spline fitting with free knots is still a challeng-
ing problem. The reasons are as follows. First, analytic expressions
for optimal knot locations, or even for general characteristics of
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optimal knot distributions, are not easy to derive [11]. Second, the
unknown number and position of knots result in a large and non-
linear optimization problem, which is computationally very diffi-
cult.

In the literaturemanymethods have been proposed to optimize
knots with a given number of knots. The problem of knot place-
ment is formulated as a nonlinear optimization problem with the
constraint that knots should form a nondecreasing sequence. The
first type of techniques transforms the constrained optimization
problem into an unconstrained problem, then local gradient-based
method or Gauss–Newton method are employed for minimiza-
tion [11–13]. However, local optimization methods require a good
initial guess and cannot guarantee global optimality. The second
type of techniques applies global optimization to avoid the draw-
backs of local methods, but it is computationally more expensive
[14–16]. There are also some works which utilize the underlying
feature information of the data to select knots, instead of solving a
nonlinear optimization problem [1,17,18]. However, in suchmeth-
ods the number of knots is determined beforehand and the results
are sensitive to measurement noises.

Another approach for knot calculation is based on knot-removal
strategy which is to reduce the number of knots of a given spline
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by perturbing the spline within a given tolerance [19,20]. The
main idea of the technique is to remove interior knots according
to assigned weights. For data approximation, a piecewise linear
approximation of the data is computed, then knot removal strategy
is performed on the linear approximation, and finally the data is
approximated by a smooth spline with computed knots.

A new development in recent years for knot calculation is based
on sparse optimization [21,22]. Sparsity is the core of compressed
sensing which is widely used in computer vision and signal pro-
cessing [23–27]. Sparsity means that a signal can be represented in
a linear combination of some bases or dictionaries such that most
of the combination coefficients are zero. In [21], the authors for-
mulated the spline fitting problem as a convex optimization prob-
lem, where the l1 norm of jump of third order derivatives of C2

cubic splines is minimized; while in [22], the authors first selected
a subset of basis functions from the pre-specified multi-resolution
basis set using the statistical variable selectionmethod-Lasso, then
identified a concise knot vector that is sufficient to characterize
the vector space spanned by the selected basis functions to fit the
data. These twomethods can compute the number and positions of
the knots simultaneously, yet they still produce a lot of redundant
knots.

Targeting on the limitations of existing methods, we propose a
computationally efficient framework to calculate knots for splines
fitting via sparse optimization. The framework is composed of two
stages: firstly we solve a convex sparse optimization model start-
ing from a dense initial knot vector. The output is those knots
(which we call active knots) at which a certain order derivatives
of the fitting spline is discontinuous. The idea to formulate the op-
timization model in this step is the same as that in [21] but with a
distinct formulation. Secondly, we adjust the active knots in the
first stage by certain rules to remove redundant knots. Further-
more, several theoretical results about the algorithm are estab-
lished in this paper. In particular, when the data points are sampled
dense enough from a spline, the knots of this spline can be recov-
ered by the proposed framework in any given precision.

The remainder of the current paper is organized as follows. In
Section 2, we review some preliminary knowledge about B-splines
and least-square fitting with B-splines. In Section 3, a two-stage
framework of curve fitting with B-splines is described. Some re-
lated theoretical results are also presented. In Section 4, we illus-
trate the effectiveness of the proposed method through numerical
experiments and comparisons with existing methods. Finally, in
Section 5, we conclude the paper with discussions on future re-
search problems.

2. Preliminaries

We refer to the fundamental book [1] for a complete treatment
of splines. Here we simply introduce the adopted notations which
are needed for presenting our results.

2.1. B-splines

Let {ci}ni=0 ∈ Rd ben+1 control points, andNp
i (t)be the B-spline

basis functions of degree p defined on a knot vector U = {t0, t1,
. . . , tn+p+1} with ti ≤ ti+1, i = 0, 1, . . . , n + p, then a B-spline
curve of degree p is defined by

c(t) =

n
i=0

ciN
p
i (t), (1)

where Np
i (t) is defined recursively as follows:

N0
i (t) =


1, t ∈ [ti, ti+1)
0, otherwise (2)

Np
i (t) =

t − ti
ti+p − ti

Np−1
i (t) +

ti+p+1 − t
ti+p+1 − ti+1

Np−1
i+1 (t), p ≥ 1. (3)

When d = 1, c(t) is called a B-spline function and the control
points are called spline coefficients. In this paper, we only consider
data fitting with B-spline functions.

U is often chosen as an open knot vector, namely boundary
knots are set to a = t0 = t1 = · · · = tp, tn+1 = · · · = tn+p+1 = b.
The knots ti, i = p + 1, . . . , n are called interior knots of U . The
multiplicity of an interior knot ti is denoted bymi (mi ≤ p+ 1). An
interior knot ti is called an active knot of c(t) if the (p + 1 − mi)th
order derivative of c(t) is discontinuous at ti, otherwise it is called
an inactive knot of c(t). Fig. 1 shows a C2 continuous cubic B-spline
function and its first three derivatives. The spline has 9 interior
knots (marked by crosses) and 3 active knots (marked by black
crosses) where the third order derivatives are discontinuous.

The kth order derivative of c(t) is a B-spline of degree p − k:

c(k)(t) = Π k
i=1(p + 1 − i)

n
i=k

c(k)
i Np−k

i (t), (4)

with

c(k)
i =


ci, if k = 0,
c(k−1)
i − c(k−1)

i−1

ti+p+1−k − ti
, if k > 0.

(5)

The Fourier transform of the jth basis function Np
j (t) is defined

as

Np
j (t) =


−∞

−∞

Np
j (t)e

iwtdt =
(p + 1)!
(iw)p+1

p+1+j
k=j

eiwtk

θ ′(tk)
, (6)

where θ(t) = Π
p+1+j
k=j (t − tk), w ∈ R represents frequency. For

uniformly distributed knots, the Fourier transform can be simpli-
fied as:

Np
j (t) =


ei|τ |w

− 1
i|τ |w

p+1

, (7)

where |τ | is defined as |τ | = max
i

(ti+1 − ti).

2.2. Least squares approximation by splines

Given a set of data {Pi}Ni=1, and corresponding parameter values
{si}Ni=1, the least square approximation with splines is defined

min
c(t)

N
i=1

(c(si) − Pi)2, (8)

where c(t) is a spline function defined by (1).When the knot vector
U of the spline function c(t) is fixed, problem (8) is reduced to

min
C∈Rn+1

∥P − AC∥
2, (9)

where P = (P1, . . . , PN)T , A = (aij)N×(n+1) with aij = Np
j (si), and

C = (c0, c1, . . . , cn)T is the coefficient vector.
If A has rank n + 1, then ATA is nonsingular, thus the solution C

of problem (9) is obtained uniquely by

ATAC = ATP. (10)
The sufficient and necessary conditions for A to have rank n + 1
are stated by Schoenberg and Whitney [28]. If A does not have full
rank, the solution C is defined as the solution which minimizes
∥C∥2 among all the solutions of (10).

3. Knot calculation for spline fitting

In this section, we will present a two-stage framework of knot
calculation for spline fitting in detail. We start with an outline of
the algorithm. Then the sparse optimization model and knot ad-
justment strategy are described respectively.
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