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h i g h l i g h t s

• Reduction of the pentahedron problem to a well-constrained system of 3 equations in 3 unknowns.
• A considerable performance enhancement (×42) over classical formulation.
• Existence of 3D parallel solutions for generic 3D pentahedron problems is shown.
• Interesting properties of the solution set are studied.
• Discussion of how the pentahedron interesting properties generalize for other polyhedra.
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a b s t r a c t

Nowadays, all geometric modelers provide some tools for specifying geometric constraints. The 3D
pentahedron problem is an example of a 3D Geometric Constraint Solving Problem (GCSP), composed of
six vertices, nine edges, five faces (two triangles and three quadrilaterals), and defined by the lengths
of its edges and the planarity of its quadrilateral faces. This problem seems to be the simplest non-
trivial problem, as the methods used to solve the Stewart platform or octahedron problem fail to solve
it. The naive algebraic formulation of the pentahedron yields an under-constrained system of twelve
equations in eighteen unknowns. Even if the use of placement rules transforms the pentahedron into
a well-constrained problem of twelve equations in twelve unknowns, the resulting system is still hard to
solve for interval solvers. In this work, we focus on solving the pentahedron problem in a more efficient
and robust way, by reducing it to a well-constrained system of three equations in three unknowns,
which can be solved by any interval solver, avoiding by the way the use of placement rules since the
new formulation is already well-constrained. Several experiments showing a considerable performance
enhancement (×42) are reported in this paper to consolidate our theoretical findings. Throughout this
paper, we also emphasize some interesting properties of the solution set, by showing that for a generic
set of parameters, solutions in the form of 3D parallel edge pentahedra do exist almost all the time, and by
providing a geometric construction for these solutions. The pentahedron problem also admits degenerate
2D solutions in finite number. This work also studies how these interesting properties generalize for other
polyhedra.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Geometric Constraint Solving Problems (GCSPs) have retained
much of the researchers attention since several decades [1–7].
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This attention may be justified by the advances in computing
systems, in terms of both hardware capabilities and software
facilities, which translated into a growing need for new CAD/CAM
techniques and opened new perspectives for the implementation
of researchers ideas. Although there exist a large number of
GCSP-related works, expressing and solving geometric constraint
systems is still an active research topic and much more effort has
to be done in this direction.

This paper considers a particular GCSP problem: the 3D penta-
hedron. A pentahedron is a polyhedron in 3D, not necessarily con-
vex, consisting of five faces (Fig. 1). Two faces are triangles, while
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Fig. 1. A zoo of 3D pentahedra. All lines AD, BE, and CF which join the two triangles ABC and DEF concur at point I , according to Desargues’ theorem.

the remaining three faces are planar quadrilaterals. The lengths
of the nine edges are given in the problem formulation. Thus, the
problem has twelve constraints: nine lengths of the nine edges,
plus three coplanarity conditions of the three quadrilateral faces.
Under mild assumptions, this problem is well-constrainedmodulo
an isometry (rigid body motion and symmetry). The pentahedron
may be concave and self-intersecting. As an example, two of its tri-
angular faces may intersect each other (Fig. 1).

Why is the pentahedron problem so interesting? First, its state-
ment is simple, but its resolution is difficult. We cannot solve it
with computer algebra, even when the distance parameters are
instantiated with numeric values. We cannot solve it with Cay-
ley–Menger determinants or their generalizations [8–10], though
the pentahedron problem seems very close to the octahedron
problem (also named the Stewart platform) as both polyhedra have
six vertices, and Cayley–Menger determinants give an elegant so-
lution to the octahedron problem.

The pentahedron problem is even unsolvable with the repa-
rameterization method proposed by Gao et al. [11] to solve many
3D simple problems similar to the pentahedron problem. In their
work, Gao et al. detected or introduced one key unknown u (an
angle or a length) and expressed all the other unknowns of the
problem as a function of u. By construction, all the constraints of
the problem, except one constraint called the ignored constraint,
are satisfied. Therefore, it remains to only vary the key unknown
u, i.e., to plot or sample a curve parameterized by u, and to detect
when the ignored constraint is satisfied. Unfortunately, despite the
apparent simplicity of the pentahedron, two key unknowns are
needed to solve this problem.

The first reason behind our focus on the study of the pentahe-
dron problem in this paper is that the latter has not yet been solved.
To the best of our knowledge, no work in the literature has focused
on this problem, though a recent Ph.D. thesis made an allusion to
it [12]. Themain contribution of our paper is the firstmethodof res-
olution of the pentahedron which exploits a geometric property of
the 3D pentahedron. This permits to drastically reduce the number
of unknowns and equations of the problem. At the end, we obtain
a system of only three equations in three unknowns, that is much
smaller than the naive version of twelve equations in twelve un-
knowns, andwhich is easily solvablewith either awide range of in-
terval solvers, orwith homotopic solvers. Our experiments showed
that the interval analysis library ALIAS-C++ [13] achieved a perfor-
mance gain of×42 for the reduced pentahedron formulation, com-
pared to the naive one.

A second reason making the pentahedron problem very inter-
esting is the structure of its solutions, which is unexpectedly rich.
Up to an isometry, this problem admits three finite sets of solu-
tions: (1) a first set of 3D generic solutions, (2) a finite set of 3D

special solutions where three edges are parallel, and (3) a set of 2D
solutions.

A third reason motivating our work is the opportunity given
by this problem for studying some interesting issues on a simple
but non-trivial problem.We onlymention the following important
issue: what are the rigidity or the flexibility conditions for the
pentahedron problem? This issue is essential in many domains
such as robotics and constitutes a challenge for computer algebra.
Remember that the pentahedron, or any constrained object, is
flexible when it can be continuously deformed, while fulfilling at
the same time all the problem constraints during its deformation.
For instance, it can be easily seen that when the two triangular
faces of the pentahedron have equal lengths a, b, and c , and the
three edges linking these two faces have the same length h, i.e., the
three quadrilateral faces are parallelepipeds, then the pentahedron
is flexible. More precisely, it has three degrees of freedom. For
all possible directions of a 3D line, there exists a pentahedron
solution, such that the equal-length edges of this pentahedron are
oriented the same as that 3D line. It is easy to compute the degree
of flexibility of a given pentahedron by simply computing the
rank and co-rank of its Jacobian. However, computing the general
algebraic conditions for flexibility or rigidity is a hard problem.

The rest of this paper is structured as follows: Section 2 de-
scribes the classical formulation of the pentahedron problem,
which results in a system of twelve equations in twelve unknowns.
Section 3 presents our new and reduced formulation of the penta-
hedron problem that yields a systems of three equations in three
unknowns, and compares the performance of the interval solver
ALIAS-C++ on the two formulations. In Section 4, we show that for
a generic set of length parameters, the corresponding pentahedron
problem admits almost all the time solutions in the form of 3D
pentahedra with parallel edges, and we provide a geometric con-
struction for them. In Section 5, we consider planar solutions to the
pentahedron problem. In Section 6, we discuss the degenerate case
of 3D simple pentahedra and provide a solution for this configura-
tion. Finally, in Section 7, we study how the interesting properties
of the pentahedron problem and the proposed resolution method
can extend or not to other simple polyhedra.

2. The classical 3D pentahedron GCSP

A GCSP is composed of a set of geometric objects, whose place-
ment must fulfill a set of geometric constraints. The 3D pentahe-
dron problem is composed of six points: A, B, C , D, E, F . Triples of
points ABC and DEF constitute the vertices of the two triangular
faces of the pentahedron, while the remaining three quadrilateral
faces denoted as F1, F2, and F3 have respective vertices ABED, BCFE,
CADF . See Fig. 2(a).
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