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• A subdivision algorithm for 2-DOF nonlinear algebraic systems.
• Topologically guaranteed subdivision termination criteria in Rn, n ≥ 3.
• A tessellation method for two-manifolds in Rn.
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a b s t r a c t

We present a subdivision based algorithm to compute the solution of an under-constrained piecewise
polynomial system of n−2 equations with n unknowns, exploiting properties of B-spline basis functions.
The solution of such systems is, typically, a two-manifold in Rn. To guarantee the topology of the
approximated solution in each sub-domain, we provide subdivision termination criteria, based on the
(known) topology of the univariate solution on the domain’s boundary, and the existence of a one-to-
one projection of the unknown solution on a two dimensional plane, in Rn. We assume the equation
solving problem is regular, while sub-domains containing points that violate the regularity assumption
are detected, bounded, and returned as singular locations of small (subdivision tolerance) size. This
work extends (and makes extensive use of) topological guarantee results for systems with zero and one
dimensional solution sets. Test results inR3 andR4 are also demonstrated, using error-bounded piecewise
linear approximations of the two-manifolds.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and related work

The general problem discussed in this paper is the solution of
equation systems of the form:

F(x̄) = 0̄, (1)

where the multivariate function F is a piecewise polynomial,
defined on some compact n-dimensional box D ⊂ Rn with values
in Rn−2. We assume 0̄ ∈ Rn−2 is a regular value (as defined in
Section 2) of F .

The need for an efficient and robust method for finding all so-
lutions of equation systems (1) in a given domain arises in a vari-
ety of fields such as Computer Aided Design (CAD), engineering,
robotics, and in fact whenever the geometric constraints of the
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problem can be formulated as a set of algebraic (non-linear in gen-
eral) equations. Bisector surfaces [1], sweep-surfaces [2], medical
iso-surfaces [3], and the possible states of any 2-DOF (Degrees of
Freedom) kinematic system (Ch. 06 of [4]) are all examples of appli-
cation domains that can be mapped to an under-constrained sys-
tem with a bivariate solution in Rn, where n ≥ 3.

The general problem of solving non-linear algebraic constraints
with any solution set’s dimension (not necessarily two) is typically
addressed via either local methods and/or global methods. The lo-
cal methods refer to a family of numeric iterative algorithms, such
as the Newton–Raphson procedure or other prediction–correction
methods. Although very useful and typically of quadratic conver-
gence, these techniques depend on the quality of the initial can-
didate/starting point, and cannot guarantee the global solution: all
roots or all connected components of the solutionmanifold, and its
topological properties.

As for global methods, the problem of finding all (real or com-
plex) solutions for equations such as (1) has beenmainly addressed
via three major approaches. Algebraic geometry techniques (elim-
ination theory and the use of Gröbner bases, [4]) and Homotopy
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techniques [5] are typically less efficient for finding only the real
roots in a bounded domain, due to various practical considerations
(for a detailed survey refer to [6,7]). The third class of methods
(and the one discussed in this paper), are the subdivision techniques,
which are reviewed in Section 3, and are the framework for the re-
sults introduced herein.

The main result in this paper is a topologically guaranteed
subdivision termination condition for equation systems with
bivariate solutions (two-manifolds). The technique extends and
exploits previously achieved topological guarantee results for the
zero and one dimensional solutionmanifolds in [8–10]. Since these
results play a significant role in the development of the methods
introduced in this paper, they are reviewed in more detail in
Section 3. Subdivision algorithms with topological guarantee are
known for implicit regular surfaces in R3, for example as in [11,
12]. To the best of our knowledge, the criteria introduced in this
paper is the first to provide topological guarantee for two-manifold
solutions inRn, when the co-dimension is greater than one (n > 3).

The problem of guaranteeing the topological properties of
manifolds given as (solutions of) algebraic constraints has been
widely addressed. Methods for guaranteeing the topology of
implicit plane curves are presented in [13,14], and are based
on locating the critical points and subdividing the domain such
that each piece of the solution is a monotone arc. Further, a
numerical method with topological guarantee for implicit planar
curves is given in [15], which also detects isolated singularities
and computes their degree, using the number of connected
components of certain topological structure in the neighborhood
of the singularity. The topology of implicit surfaces has also
been extensively investigated in R3, within the framework of ϵ-
sampling ([16] and more), in the contexts of polygonization and
rendering [3,17–19], with results for the non-regular cases as
well [20,21]. More recent results for level sets of a given implicit
function in R3 are in [11,12], presenting algorithms for correct
connectivity of the reconstructed surface by a careful case analysis
and subdivision until ambiguity can be resolved, using additional
information such as parameterizability and bounding gradient
norm. In [22], methods for contouring one- and two-manifolds,
generally in Rn, are proposed, but without a topological guarantee.
In [21], results from Morse theory are used to locate and classify
singular points of an implicit surface in R3, and conclude correct
topology via interactive polygonization. Other related aspects of
nonlinear systems are treated in [23] on dimension reducing,
in [24] on expression trees representation, in [25] on parallel
computation and convergence guarantee of Newton–Raphson via
the Kantorovich theorem, and more. Our focus in this paper is
mainly on the subdivision stage, the topological properties of the
solution set (rather than the numeric properties) in an attempt to
guarantee the topology of the result, and we make frequent use of
the properties of the B-spline representation.

The rest of this paper is organized as follows: Section 2
introduces the terminology and the problem setting. Section 3
provides a brief review of the subdivision paradigm for algebraic
constraints solving, focusing on useful results to our problem.
Section 4 provides the solution to the problem of a topologically
guaranteed subdivision termination criteria for under-determined
systems with bivariate solution spaces. Section 5 introduces
a triangulation method for the numeric reconstruction in the
topologically guaranteed sub-domains. Some examples are given
in Section 6, and finally, Section 7 concludes and discusses further
optional problems for this research.

2. Notation and terminology

We now provide the problem formulation, state general
assumptions, and review frequently used basic concepts. Let F be

a multivariate function defined on some compact, n-dimensional
box: D = [a1, b1] × · · · × [an, bn] ⊂ Rn, with values in Rn−2.
For differentiability considerations, F can always be viewed as a
function defined on some open set U ⊂ Rn containing D. Unless
otherwise stated, F is at least C1 smooth, and is typically given in
a tensor product Bézier or B-spline form (a detailed study of these
representations can be found in [26]), generally represented as:

F(x1, . . . , xn) =


i1

· · ·


in

Pi1...inBi1,m1(x1) . . . Bin,mn(xn). (2)

The points Pi1...in ∈ Rn−2 are the control points of F , and the Bij,mj ’s
are the B-spline basis functions of ordermj of F . The zero set of F is
denoted by:
Z = {x̄ ∈ U : F(x̄) = 0̄ ∈ Rn−2

} = F−1(0̄).
Our main interest is in Z ∩ D, the region of the zero set
belonging to the compact domain. The concepts we now refer
to, can be found in textbooks on topology and differentiability
such as [27,28]. Recall that a homeomorphism is a continuous
function between topological spaces that has a continuous
inverse. Homeomorphisms are the equivalence relation between
topological spaces. When we later claim that the ‘‘topology of the
solution set is guaranteed’’, we mean that we have successfully
classified the solution set ‘‘up to homeomorphism’’.

Omitting the precise and somewhat technical definition [27,
29], recall that a two dimensional sub-manifold of Rn, (n ≥ 2)
is a subset M ⊂ Rn, such that every p ∈ M has a neighborhood
(in the topology inherited from Rn) that is homeomorphic to (an
open subset of) the plane R2. The ability to treat the solution set
as a manifold is made possible by the regularity assumption which
we now describe. Denote by fi the i’th scalar component of F . The
Differential of F at a point p ∈ D is the linear map denoted by dFp,
represented in the standard bases by the (n − 2) × nmatrix:

[dFp]ij =
∂ fi
∂xj

(p); i = 1, . . . , n − 2; j = 1, . . . , n.

Definition 1. Let F : U ⊂ Rn
→ Rn−2 be a differentiable mapping

of an open set U ⊂ Rn. A point p ∈ U is defined to be a critical point
of F if the differential dFp : Rn

→ Rn−2 is not surjective. The image
F(p) of a critical point is called a critical value of F . A point a ∈ Rn−2

that is not a critical value is called a regular value of F .

From Definition 1, it is evident that for c ∈ Rn−2 to be a
regular value of F , dFp is surjective for all p ∈ F−1(c). When this
is the situation, F−1(c) is called a regular level set. Our regularity
assumption is that the solution F−1(0̄) is a regular level set. As
another interpretation, the regularity assumption is equivalent to
the linear independence of the n − 2 gradients of fi, for all p ∈ Z .

The term ‘‘general position’’ usually refers to a situation where
an arbitrarily small perturbation of non-regular input, re-attains
regularity. Put differently: the configurations of the input that do
not satisfy the assumption, occur with zero probability.1 Indeed,
this is precisely our case, as stated in Sard’s theorem [27], which
roughly says that the set of critical values of a smooth function
has measure zero in the range. In our setting, this is equivalent
to saying that if Z = F−1(0̄) is not a regular level set, then for
any arbitrarily small ϵ > 0, there is another value c ∈ Rn−2

such that F−1(c) is a regular level set, and ∥c∥ < ϵ. Although rare
in the pure mathematical sense, a non-surjective differential is in
fact a common configuration in real life problems (i.e. tangential
curves/surfaces). We briefly address this issue in Section 7.

Finally, the following theorem is what enables us to use the
properties of a manifold for regular level sets:

1 The precise definition for general position varies according to context. A more
detailed exposition can be found in Ch. 1 of [30].
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