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Common approximation tools return low-order approximations in the vicinities of singular-
ities. Most prior works solve this problem for univariate functions. In this work we 
introduce a method for approximating non-smooth multivariate functions of the form 
f = g + r+ where g, r ∈ C M+1(Rn) and the function r+ is defined by

r+(y) =
{

r(y), r(y) ≥ 0
0, r(y) < 0

, ∀y ∈ R
n .

Given scattered (or uniform) data points X ⊂ R
n , we investigate approximation by quasi-

interpolation. We design a correction term, such that the corrected approximation achieves 
full approximation order on the entire domain. We also show that the correction term is 
the solution to a Moving Least Squares (MLS) problem, and as such can both be easily 
computed and is smooth. Last, we prove that the suggested method includes a high-order 
approximation to the locations of the singularities.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Approximation of non-smooth functions is a complicated problem. Common approximation tools, such as splines or ap-
proximations based on Fourier transform, return smooth approximations, thus relying on the smoothness of the original 
function for the approximation to be correct. However, the need to approximate non-smooth functions exists in many appli-
cations. For a high-order approximation of non-smooth functions, we need to allow our approximation to be non-smooth. 
Otherwise, in the vicinities of the singularities, we will get a low-order approximation. In this work we will suggest a 
method that will allow us to properly approximate non-smooth functions of a given model.

We will concentrate on functions f : Rn → R which may be modelled as f = g + r+ where g, r ∈ C M+1(Rn) and the 
function r+ is defined by

r+(y) =
{

r(y), r(y) ≥ 0
0, r(y) < 0

, ∀y ∈R
n .

Such functions are obviously continuous, but are non-smooth across the hypersurface
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�r := {
z ∈ R

n : r(z) = 0
}

.

As an example for such functions, consider shock waves, which are solutions of non-linear hyperbolic PDEs (Morse and 
Ingard, 1986). Another example would be a signed distance function (Osher and Fedkiw, 2003), where the distance is 
measured from a disconnected set. Our goal is to achieve high-order approximations of such functions. To achieve that we 
will concentrate on a specific family of approximation tools.

Consider a quasi-interpolation operator Q (Wendland, 2004). Such an operator receives the values of a function φ : Rn →
R on a set of data points X ⊂ R

n . The quasi-interpolation operator Q returns an approximation defined by

Q φ(y) :=
∑
x∈X

qx(y)φ(x) , ∀y ∈R
n ,

where {qx} are the quasi-interpolation basis functions, each is smooth and has compact support.
Let h be the fill distance of X ,

h := min
{

L : B L(y) ∩ X 	= ∅ , ∀y ∈R
n} ,

where Br(y) is the ball of radius r centred at y. Denote

ϒM := min
{

L > 0 : ∀y ∈R
n , B Lh(y) ∩ X is uni-solvent for �M(Rn)

}
.

Here,

�M(Rn) := {
p : Rn →R : deg(p) ≤ M

}
,

and deg(p) is the total degree of the polynomial p. Thus, h is the minimal radius which is guaranteed to contain a data 
point, and ϒM · h is the minimal radius that guarantees enough data points to uniquely determine each polynomial in 
�M(Rn). We will also assume that there exists N > 0 such that for all y ∈ R

n we have

# (X ∩ Bh(y))

hn
≤ N .

That is, the data set X has no accumulation points. Denote

R := min
{
ρ > 0 : supp(qx) ⊆ Bρh(x) , ∀x ∈ X

}
. (1)

We assume that the operator Q has a bounded Lebesgue constant

L1 := sup

{∑
x∈X

|qx(y)| : y ∈R
n

}
(2)

and reproduces polynomials in �M(Rn). Then, the error in the quasi-interpolation,

Eφ := φ − Q φ

satisfies for all φ ∈ C M+1(Rn) and y ∈ R
n

|Eφ(y)| ≤ C1 · ‖φ‖C M+1 · hM+1

where

C1 = (1 + L1) · R M+1

and

‖φ‖C M+1 :=
∑

|β|=M+1

‖Dβφ‖∞
β!

with β a multi-index and ‖ · ‖∞ the maximum norm. That is, the operator Q has full approximation order for smooth 
functions (Wendland, 2004). On the other hand, since the approximation Q φ is always smooth, the operator gives low-order 
approximations in the vicinities of singularities.

One example of a quasi-interpolation operator is the MLS approximation (Bos and Salkauskas, 1989; Levin, 1998). Given 
a function φ : Rn → R and a point y ∈ R

n the MLS approximation is defined as Q φ(y) := p y(y) where

p y := arg min
p∈�M (Rn)

∑
x∈X

η

(‖y − x‖
h

)
· (p(x) − φ(x))2 . (3)
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