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We present an algorithm that computes the one-sided Hausdorff distance from a triangle 
mesh to a quad mesh. Our algorithm is much more robust than previous ones in the sense 
that memory requirement is vastly reduced, by avoiding storing combinatorial pairs of each 
two input model’s parts. Meanwhile, point projection via uniform grid greatly accelerates 
the algorithm. Experimental results show that even for cases where the Hausdorff distance 
is near zero, its precise computation is done in an interactive speed, while memory 
consumption is easily manageable.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Quadrilateral meshes’ structural regularity is a major advantage over unstructured triangle meshes in that quad meshes 
can better represent or preserve principal curvature and feature curves. The structure can be exploited to efficiently create 
bounding volume hierarchies (Kim et al., 2011), data structure used to accelerate many geometric operations. The regularity 
can also be regarded as a form of parameterization, which further means that it can easily be converted into parameterized 
surfaces. In finite element analysis, hexahedral meshes, whose boundary is a quad mesh, are preferable to tetrahedral 
meshes (Benzley et al., 1995; Cottrell et al., 2009). As such, approximating geometric models with quad meshes has become 
a widely researched subject, as surveyed by Bommes et al. (2013). The Hausdorff distance is the measure most often used 
to determine the approximation quality of such quad meshes.

The Hausdorff distance (HD) between two geometric models is an interesting measure with various application possi-
bilities. It becomes zero only when the two models are identical and positioned exactly the same, which implies that the 
HD can be used for shape matching and as an approximation error (Alt and Guibas, 1999). However, the computation itself 
is a challenging matter, especially when the HD is near zero, as eliminating parts of the models that do not contribute to 
the HD becomes harder. Unfortunately, near-zero cases are when HD computation is most relevant, as one would aim to 
minimize the HD when creating an approximation or finding a match. Such cases also require continuously growing num-
ber of iterations and memory space, threatening the proper execution of HD computation algorithms. Previous computation 
algorithms for HD between mesh models (Aspert et al., 2002; Bartoň et al., 2010; Cignoni et al., 1998; Guthe et al., 2005;
Tang et al., 2009) fail in that regard, with even the most recent results occasionally ending up crashing in near-zero cases.
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Fig. 1. An example of triangle mesh approximation by a quad mesh. Measuring the small Hausdorff distance is a way to assess the quality of the approxi-
mation. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

For NURBS surfaces, the algorithm of Kim et al. (2013) is one example that successfully computes near-zero HD in real 
time. But the situation is much more complex for mesh models, which are unlike smooth NURBS surfaces. This may be 
surprising, since they are the simplest form of surface representation. Consider offsetting one of the input models in the 
surface normal direction by a continuously increasing radius. When the radius reaches the HD is the point where the offset 
first envelops the other model. But the discreteness of meshes leads to complex offset representation; vertices become 
spheres and edges become cylinders. The increased number of combinatorial possibilities complicates the analysis of the 
offset’s relationship with the models.

This hinders quad mesh-to-triangle mesh HD computation, but we are able to take advantage of the surface-like prop-
erties of the quad mesh and present a fast and robust algorithm for the computation of the one-sided HD from a triangle 
mesh to a quad mesh, guaranteed within a very small error bound, even for near-zero HD cases. Experimental results show 
that this error bound can be arbitrary, up to machine precision without any significant performance drawback. While the 
one-sided HD is not the HD proper — it should be two-sided — its computation is the first half of the whole HD computa-
tion, and thus a crucial step. It can nevertheless be used, to some degree, for the evaluation of approximated quad meshes, 
aiding in their refinement.

For surfaces in general, the one-sided HD from surface A to surface B is defined as:

h(A, B) = max
p∈A

min
q∈B

‖p − q‖. (1)

In other words, it is the maximum among points in A of the minimum distance to B . As mentioned, it can be used as 
a measure of B ’s approximation power of A. Having small h(A, B) means good approximation, since for any point on A, 
there is a point on B within the radius h(A, B). Thus, fast and accurate computation of the HD aids in the evaluation of the 
quality of an approximation, and we do this for the case where A is a triangle mesh and B is a quad mesh.

We iteratively split certain relevant pieces of A into smaller pieces, managing them in a queue. Eliminating pieces known 
to be irrelevant to the HD is a core operation, and their identification (Sections 5.2 and 5.3) is one of our main contributions. 
Unlike the approach introduced by Tang et al. (2009), the A pieces are the only ones enqueued, each by itself, instead of as 
combinatorial pairs with pieces of B . This greatly reduces the memory requirement necessary for HD computation, resulting 
in a more robust algorithm, even when the HD is near zero. Meanwhile, assigning the quads of B into a uniform grid allows 
much faster point projection, which is a bottleneck operation in HD computation.

Since we are dealing in R3, a quadrilateral is in general non-planar, and is therefore, strictly speaking, a skew quadrilateral
whose interior surface is up to interpretation. One popular solution in graphics is to split the quad into two triangles, by 
adding a diagonal edge. As there are two diagonals, this is once again a matter of choice, possible criteria for which include 
diagonal length and dihedral angle. As long as a split is given for each quad, our algorithm can handle them. One may 
also consider each quad to be a bilinear surface interpolating its four vertices. For generalization, we cover both forms of 
interpretation with differences in algorithm details.

To simplify illustrating our algorithm, in Section 3, we first describe the general framework for finding the HD between 
two surfaces without any assumption about the properties of the surfaces. Then we apply it to the simple problem of 
computing the HD from a single triangle to a single quad by specifying its ambiguous elements, in Section 4. This is 
extended to our main problem in Section 5.

2. Related work

Past research on Hausdorff distance computation that does not merely involve point sets is in general easily traceable, 
likely due to its difficulty. It was first studied for the case of planar polygons with a linear-time algorithm by Atallah (1983), 
albeit restricted to non-overlapping, convex cases. Planar polygons and polygonal curves were further studied by Alt et al.
(1995), with an O (n log n) time complexity algorithm. Alt et al. (2003), Godau (1999) have also explored HD computation for 
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