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Abstract

We propose two generalisations of Gregory patches to faces of any valency by using generalised barycentric coordinates in com-
bination with two kinds of multisided Bézier patches. Our first construction builds on S-patches to generalise triangular Gregory
patches. The local construction of Chiyokura and Kimura providing G1 continuity between adjoining Bézier patches is generalised
so that the novel Gregory S-patches of any valency can be smoothly joined to one another. Our second construction makes a
minor adjustment to the generalised Bézier patch structure to allow for cross-boundary derivatives to be defined independently
per side. We show that the corresponding blending functions have the inherent ability to blend ribbon data much like the rational
blending functions of Gregory patches. Both constructions take as input a polygonal mesh with vertex normals and provide G1

surfaces interpolating the input vertices and normals. Due to the full locality of the methods, they are well suited for geometric
modelling as well as computer graphics applications relying on hardware tessellation.

1 Introduction
The creation of G1 (or tangent plane) continuous surfaces from a polygonal mesh has long been a problem in computer graphics
and geometric modelling. Attaining this level of continuity locally, by using information from only one polygon at a time, is a
difficult problem. By augmenting the positional data of the mesh with vertex normals it becomes possible to assure G1 continuity
between adjacent patches by taking into account only locally defined information. Complex smooth shapes are easily modelled by
automatically generating patches based on coarse polygonal meshes. In addition, such techniques are well suited for applications
in computer graphics relying on hardware tessellation.

This work describes the augmentation of the S-patch structure [20] with Gregory terms and rational blending functions.
Moreover, the method of Chiyokura and Kimura [4] is generalised to multisided faces such that a Gregory S-patch can be joined
smoothly to adjacent (Gregory or Bézier) patches. The combination of these results in a multisided generalisation of triangular
Gregory patches. In addition, the method of Chiyokura and Kimura is also applied to generalised Bézier patches [28]. By adjusting
the control point structure of this patch it becomes possible to define cross-boundary derivatives independently per side. This
effectively creates a multisided generalisation of quadrilateral Gregory patches.
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G1 continuity is a less strict version of the parametric C1 continuity. Essentially, it means
that along the shared boundary of two parametric surfaces the surface normal field is shared
as well. When considering the problem of joining patches with G1 continuity, some difficulties
arise. It is often the case when using polynomial constructions that cross-boundary derivatives
can be matched on each one of the boundary edges separately, but internally the mixed partial
derivatives, ∂u∂v and ∂v∂u, cannot. This is known as the vertex inconsistency problem or the
twist compatibility problem. A commonly used solution is to employ rational functions that
blend the derivatives accordingly.

Multisided surface patches are well-established in computer graphics and geometric modelling. They offer the ability to
smoothly interpolate data over polygonal domains such that visually pleasing surface patches are created. However, the problem
of how to smoothly join several of these patches together has not been given much attention. One such multisided patch is the
S-patch [20], which is a multisided generalisation of ordinary Bézier patches. In Section 3 the conditions of G1 continuity for
S-patches are reviewed and it is shown how Chiyokura and Kimura’s method can be adapted to S-patches. We first look at
quadrilaterals (Section 3.1) and then show how the structure generalises to arbitrary polygons (Section 3.2).

Another representation of multisided surfaces was developed by Varady et al. [28]. This multisided patch, called the generalised
Bézier patch, has a very compact structure compared to S-patches and combines transfinite and control point oriented structures.
Section 4.1 shows how the structure of the generalised Bézier patch can be adjusted such that it blends ribbons in a Gregory-like
manner and guarantees G1 continuity between adjacent patches.

We then present and discuss results obtained by the two methods (Section 5) and conclude the paper (Section 6). But before
all that, we review existing work and recall relevant constructions ours build upon in the next section.

2 Related Work
There are several existing techniques that locally create C0 continuous triangular patches from meshes with normals. Phong
tessellation [2] and PN triangles [30] provide quadratic and cubic Bézier patches, respectively. Recently, both schemes have been
generalised to arbitrary n-sided polygons by use of generalised barycentric coordinates [13]. The patches can be constructed
locally per polygon and are therefore suitable for hardware tessellation [24].

Locally constructing C1 patches is a well studied problem, particularly in the finite element literature. For example, Clough
and Tocher [5] create smooth piece-wise cubic interpolants over a triangulated domain based on gradients at vertices and cross-
boundary derivatives at midpoints of edges. By splitting the original domain triangle into three micro-triangles, C1 continuous
surfaces are constructed. Gregory et al. [10] modified a bi-cubic Coons patch such that derivatives at vertices can be specified
without having to adhere to compatibility conditions. Mixed partial derivatives are blended by rational blending functions such
that C1 continuity is achieved. However, achieving C1 continuity is not possible for arbitrary polygonal meshes due to topological
constraints imposed by global parametrisations. Therefore, G1 continuity is often more appealing.

Chiyokura and Kimura [4] created a special Bézier patch, similar to Gregory’s patch, where cross-boundary tangents can be
defined independently per boundary edge. Through the use of rational blending functions, edge conditions are blended smoothly
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