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In engineering, geographical applications, bio-informatics, and scientific visualisation, a 
variety of phenomena is described by data modelled as the values of a scalar function 
defined on a surface or a volume, and critical points (i.e., maxima, minima, saddles) usually 
represent a relevant information about the input data or an underlying phenomenon. 
Furthermore, the distribution of the critical points is crucial for geometry processing and 
shape analysis; e.g., for controlling the number of patches in quadrilateral remeshing and 
the number of nodes of Reeb graphs and Morse–Smale complexes. In this context, we 
address the design of a smooth function, whose maxima, minima, and saddles are selected 
by the user or imported from a template (e.g., Laplacian eigenfunctions, diffusion maps). 
In this way, we support the selection of the saddles of the resulting function and not 
only its extrema, which is one of the main limitations of previous work. Then, we discuss 
the meshless approximation of an input scalar function by preserving its persistent critical 
points and its local behaviour, as encoded by the spatial distribution and shape of the 
level-sets. Both problems are addressed by computing an implicit approximation with 
radial basis functions, which is independent of the discretisation of differential operators 
and of assumptions on the sampling of the input domain. This approximation allows us 
to introduce a meshless iso-contouring and classification of the critical points, which are 
characterised in terms of the differential properties of the meshless approximation and of 
the geometry of the input surface, as encoded by its first and second fundamental form. 
Furthermore, the computation is performed at an arbitrary resolution by locally refining 
the input surface and by applying differential calculus to the meshless approximation. As 
main applications, we consider the approximation and analysis of scalar functions on both 
3D shapes and volumes in graphics, Geographic Information Systems, medicine, and bio-
informatics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In several applications (e.g., engineering, geographical applications, bio-informatics, and scientific visualisation), scalar 
functions defined on a surface or a volume are used to model a relevant information about the input data or an underlying 
phenomenon. Controlling the distribution of the critical points (i.e., maxima, minima, saddles) of a scalar function during 
its design is also crucial for geometry processing and shape analysis. For instance, properly designing a scalar function with 
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a prescribed set of critical points provides a flexible control over the number, shape, and size of the resulting quadrangular 
patches of remeshed surfaces (Dong et al., 2006; Huang et al., 2008; Ni et al., 2004), the number of nodes of the Reeb graph 
(Pascucci et al., 2007; Patanè et al., 2009) and of the Morse–Smale complex. However, harmonic functions allow the user to 
select only the number and position of its maxima and minima, with no control on the corresponding saddles. In a similar 
way, Laplacian eigenfunctions associated with small eigenvalues and diffusion maps at small scales are characterised by a 
generally low number of critical points, whose spatial location cannot be defined a-priori.

After a brief review of previous work (Sect. 2), our first goal (Sect. 3) is to design a smooth function whose maxima, 
minima, and saddles are selected by the user or imported from a template function. As main examples of template func-
tions, we mention the Laplacian eigenfunctions (Reuter et al., 2009) and the diffusion maps (Bronstein and Bronstein, 2011; 
Patanè, 2017), which are intrinsically defined by the input surface and their critical points represent relevant shape features, 
such as protrusions and high-curvature regions. The function with designed critical points is computed by applying either 
a mesh-based or a meshless approximation and by combining interpolating or least-squares constraints with the spectral 
properties of the Laplacian matrix. Then, the resulting problem reduces to the solution of a linear system. As novel contri-
bution with respect to previous work, we allow the user to select the saddles of the designed function, and not only its 
extrema.

Our second goal (Sect. 4) is to compute a meshless approximation of an input scalar function by preserving its persistent 
critical points and its local behaviour (e.g., as encoded by the level-sets), instead of minimising only the approximation error 
as done by previous work. The proposed approximation preserves the topology of the global structure of the input scalar 
function by applying interpolating constraints on its values at the persistent critical points and at their 1-star vertices. It 
also approximates the local details according to the target accuracy, through least-squares constraints on the function values 
at a sub-sampling of the level-sets. The resulting function provides a good approximation accuracy without over-fitting 
the input data, and is robust against noise and local perturbations. As novelty with respect to previous work, we focus 
on the preservation of the spatial distribution and shape of the level-sets, which are useful to characterise the function 
behaviour. For instance, in medicine the shape of the level-sets is useful to discriminate between pathological and healthy 
cases, in Geographic Information Systems (GIS) it characterises the terrain morphology, and in Computer Graphics it encodes 
geometric properties of shape-driven functions, such as geodesic and diffusion distances.

The meshless techniques underlying the design and approximation of scalar functions with constrained critical points 
support the computation of the level-sets, the classification of the critical points, and the encoding of the approximations 
in a compact representation that saves input/output space (Sect. 5). All these computations are performed at an arbitrary 
resolution by locally refining the input surface and by applying differential calculus to the meshless approximation.

2. Previous work

We briefly summarise previous work on the classification and simplification of the critical points, and on the approxi-
mation of discrete data with implicit methods and radial basis functions.

Critical points. Given a C1 function f :M→R defined on a smooth 2-manifold surface M, the critical points of f are 
defined as those points p ∈ M such that ∇ f (p) = 0 and they correspond to the maxima, minima, and saddles of f . For 
polyhedral surfaces, the method described in Banchoff (1967) classifies a vertex according to the values of f on its neigh-
bourhood. If M is a triangle mesh, then the vertex p is a maximum or a minimum if its function value is higher or lower 
than those ones on its 1-star, respectively. We briefly remind that the 1-star of a vertex pi is defined as the set of vertices 
incident to pi ; i.e., {p j : (pi,p j) edge}. If two or more iso-curves related to the same iso-value share a vertex p, then p is 
a saddle. Those points that do not fall in the previous classification are defined as regular. According to this classification, 
the Euler formula χ(M) = m − s + M provides a link between the number of critical points (i.e., m minima, M maxima, 
s saddles) of the input scalar function and the Euler characteristic χ(M) of M. For details on the classification of critical 
points for piecewise linear scalar functions on triangle meshes, we refer the reader to Bremer et al. (2004) and Sect. 3.1.

Topological simplification of critical points based on persistence. Given a scalar function f :M→R with a large number of 
critical points associated with a low variation of the corresponding f -values, previous work (Bremer et al., 2004; Edels-
brunner et al., 2004) defines a topological hierarchy for f that is constructed by performing a progressive simplification of 
the Morse complex F of f through the cancellation of pairs of critical points. Then, the critical points are paired by visit-
ing M with respect to the reordering of its vertices according to increasing values of f . The importance weight associated 
with the pair (pi,p j) is measured as the persistence of pi , p j , that is, | f (pi) − f (p j)|. The local updates of the complex are 
performed by iteratively removing those pairs with the lowest persistence and reconnecting the neighbours of the removed 
nodes. Each node removal affects the number and configuration of the critical points of F without changing f . Therefore, 
the simplification provides a hierarchy for f where each Morse complex F (k) is not associated with a corresponding scalar 
function f (k) on M.

In Edelsbrunner et al. (2006), the input scalar function f is replaced with a new function f̃ that has the same points of 
persistence of f higher than a given threshold ε and the L∞-error between f and f̃ is lower than ε. The ε-simplification
of the structure of f and the construction of f̃ are based on an iterative process, which cancels minimum-saddle pairs by 
sweeping the vertices from bottom to top and lower the saddles that belong to a pair of persistence lower than ε.
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