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Ganchev has recently proposed a new approach to minimal surfaces. Introducing canonical 
principal parameters for these surfaces, he has proved that the normal curvature deter-
mines the surface up to its position in the space. Here we prove a theorem that permits to 
obtain equations of a minimal surface in canonical principal parameters and we make some 
applications on parametric polynomial minimal surfaces. Thus we show that Ganchev’s 
approach implies an effective method to prove the coincidence of two minimal surfaces 
given in isothermal coordinates by different parametric equations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the differential geometry of space curves the natural parameters are an important tool. These parameters are used to 
define the natural equations of the space curves, the curvature and the torsion, which are objects that determine the curves 
up to position in the space. In particular, a plane curve is determined up to position in the plane by its curvature.

In the geometry of surfaces we haven’t been aware of analogous natural parameters and natural equations until now. Re-
cently natural parameters were introduced for a wide class of surfaces, the so-called Weingarten surfaces, see Ganchev and 
Mihova (2010). Some results of this article were specialized in Ganchev (2008) for the class of minimal surfaces and canon-
ical principal parameters were introduced. Like the natural parameters of the space curves they are determined up to a sign 
and additive constants. Moreover, the normal curvature of a minimal surface expressed in these parameters determines 
completely the surface up to a position in the space – just like the curvature of a plane curve.

Note that a surface may appear in quite different parametrizations and it is not easy to say whether or not two equations 
define the same surface. For example the catenoid may be represented in nonparametric form, i.e. as a graph of a function
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x̃(u, v) = (cosh u cos v, cosh u sin v, u).

To prove that the surfaces defined by two equations coincide we can look for a change of the parameters and/or the co-
ordinate system, or use a theorem from Eisenhart (1909). But any one of these methods is an arduous task in general. The 
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results of Ganchev imply a very useful method in this direction for minimal surfaces: we may simply calculate the normal 
curvature of these surfaces in canonical principal parameters and then compare the results. The problem is that usually 
a minimal surface is defined in arbitrary isothermal parameters.

Here we find a differential equation that gives us a possibility to make the transition from isothermal parameters of a 
minimal surface to canonical principal parameters. Then we make some applications of this result. We find the group of 
transformations on a holomorphic function that preserves the minimal surface generated by this function, so we join any 
minimal surface with a class of holomorphic functions.

Our results will be useful in the CAD research. Indeed one of the main tasks in the computer aided geometric design is 
to find a surface with prescribed border that minimizes the area among all the surfaces with the same border. A classical 
result says that such a surface is minimal. Because of the high nonlinearity of the area functional and the development of the 
theory of Bézier surfaces it is more convenient to consider a restricted problem: among all parametric polynomial surfaces 
with prescribed border find a surface with a minimal area, see e.g. Monterde (2004). A similar problem for biharmonic 
Bézier surfaces is considered in Monterde and Ugail (2004). Some of the results of Monterde (2004) and Monterde and 
Ugail (2004) are generalized in Wu and Wang (2012). In Xu et al. (2009) is proposed the use of a different functional for 
minimization (it is expressed by the mean and the Gauss curvature) and an optimization method is presented for Bézier 
surfaces.

Of course, because of the advantages of the minimal surfaces, it is best to consider a non-restricted problem and to obtain 
if possible a polynomial minimal surface as a result. This leads to the questions: which parametric polynomial surfaces are 
minimal and how they differ. A possible way to answer the second question is to use the method given by the results in 
Sections 3 and 4 of this paper.

It is proved in Cosín and Monterde (2002) that the parametric polynomial minimal surfaces of degree 3 in isothermal 
parameters are too rigid to be used in CAD works as a consequence of the fact that the Enneper surface is the only such 
surface. On the other hand in Xu and Wang (2010) some families of parametric minimal surfaces of degree 5 are introduced 
and some of their beautiful properties are obtained. Applying our method, in Section 5 we obtain a surprising result: these 
families actually coincide and any surface in them is homothetic to the surface generated via the Weierstrass formula with 
f (z) = z2, g(z) = z. A similar result follows for some polynomial surfaces of degree 6, introduced in Xu and Wang (2008). 
So the structure of these families is now clear.

2. Preliminaries

Let S be a regular surface defined by the parametric equation

x = x(u, v) = (
x1(u, v), x2(u, v), x3(u, v)

)
, (u, v) ∈ U ⊂ R

2.

Denote the derivatives of the vector function x = x(u, v) by

xu = ∂x

∂u
, xv = ∂x

∂v
.

The coefficients of the first fundamental form are given by

E = x2
u, F = xuxv , G = x2

v ,

and the unit normal to the surface is

U = xu × xv

|xu × xv | .

The second derivatives of x(u, v) are denoted by xuu , xuv , xv v , respectively. Then the coefficients of the second fundamental 
form are given by

L = Uxuu, M = Uxuv , N = Uxv v .

Suppose that the principal lines of S are parametric lines and the surface has no umbilic points. Then F = M = 0 and the 
principal curvatures ν1 and ν2 are expressed by

ν1 = L

E
, ν2 = N

G
.

The Gauss curvature K and the mean curvature H of a surface S are defined by

K = LN − M2

EG − F 2
= ν1ν2, H = E N − 2F M + GL

2(EG − F 2)
= ν1 + ν2

2
.

Note that the Gauss curvature of a surface does not depend on the parametrization while the mean curvature is an invariant 
up to a sign. The surface S is said to be minimal if its mean curvature vanishes identically. In this case the Gauss curvature 
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