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In order to construct a C1-quadratic spline over an arbitrary triangulation, one can split 
each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell–
Sabin 12-split. It has been shown previously that the corresponding spline surface can be 
plotted quickly by means of a Hermite subdivision scheme (Dyn and Lyche, 1998). In this 
paper we introduce a nodal macro-element on the 12-split for the space of quintic splines 
that are locally C3 and globally C2. For quickly evaluating any such spline, a Hermite 
subdivision scheme is derived, implemented, and tested in the computer algebra system
Sage. Using the available first derivatives for Phong shading, visually appealing plots can 
be generated after just a couple of refinements.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For approximating functions on a given domain, a popular method is to triangulate the domain and consider an approx-
imation in a space S of piece-wise polynomials over the triangulation. It is a hard problem to find a basis B of S that has 
all the usual properties of the univariate B-splines.

One desired property of B is that it is local, meaning that each spline in B has local support. One way to construct such 
a local basis is to first split each triangle into several subtriangles, and then construct a basis on the refined triangulation.

A popular split is the Powell–Sabin 12-split (Powell and Sabin, 1977); see Fig. 1(a) and Section 3. While the 12-split 
splits the triangle in a relatively large number of subtriangles, a major advantage over other well-known splits stems from 
the following property (Dyn and Lyche, 1998; Oswald, 1992). Let be given a triangle , its 12-split , and the split , 
where we subdivided into four subtriangles by connecting the midpoints of the edges. If we replace each subtriangle 
in by its 12-split, the space of splines over the resulting split contains the space of splines over . This refinability 
property makes the 12-split suitable for multiresolution analysis.

Recently, a simplex spline basis for the C1-quadratics on the 12-split with all the usual properties of the univariate 
B-spline basis was discovered (Cohen et al., 2013). Powell and Sabin originally constructed a nodal basis (see Section 2) 
on the 12-split, which can be used to represent C1-smooth quadratic splines over arbitrary triangulations. Schumaker 
and Sorokina viewed the space of C1-quadratics on the 12-split as the first entry in a sequence of spline spaces of 
increasing smoothness and degree (Schumaker and Sorokina, 2006). The second entry is a space of C2-quintics, with 
C3-supersmoothness at the vertices and midpoints and satisfying some additional C3-conditions of type (4) along some 
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Fig. 1. The Powell–Sabin 12-split (a) and 6-split (b) with labeling of vertices and faces. (c) A triangle with corners vA , vB , vC , midpoints vAB , vBC , vC A , 
quarterpoints vA AB , vAB B , vB BC , vBCC , vCC A , vC A A , medial vectors mA , mB , mC , and tangential vectors tA , tB , tC .

Fig. 2. Schumaker and Sorokina’s macro-element (a) and a new macro-element (b) on the 12-split. A bullet represents a point evaluation, three circles 
represent all derivatives up to order three, and a single, double, and triple arrow represent a first-, second-, and third-order directional derivative. These 
derivatives are evaluated at the rear end of the arrows, which are located at midpoints and adjacent domain points (a), and at the midpoints and quarter-
points (b).

of the interior edges. On a single triangle this space has dimension 42, and the authors constructed a nodal macro-element 
for this space; see Fig. 2(a).

For a recent and similar construction see Davydov and Yeo (2013). A family of smooth spline spaces on the 6-split and 
corresponding normalised bases were presented in Speleers (2013). For other refinable C1-quadratic elements on 6-splits 
see Dæhlen et al. (2000); Maes and Bultheel (2006) and Jia and Liu (2008). In the latter a combination of 6- and 12-splits is 
used. For the FVS C1-cubic quadrangular macro element see Davydov and Stevenson (2005); Hong and Schumaker (2004), 
and for a survey of refinable multivariate spline functions see Goodman and Hardin (2006).

The next section reviews some standard Bernstein–Bézier techniques. Section 3 introduces a new macro-element space 
for C2-quintics, with complete C3-smoothness within each macrotriangle and dimension only 39; see Fig. 2(b). In the 
following two sections a Hermite subdivision scheme is derived, implemented, and tested in the computer algebra system
Sage. A concluding remark briefly explains why the macro-element presented in this paper admits no trivial extension to 
higher degree and smoothness.

2. Bernstein–Bézier techniques

We follow the notation from Lai and Schumaker (2007). Any point v in a nondegenerate triangle T = 〈v1, v2, v3〉 can be 
represented by its barycentric coordinates (b1, b2, b3), which are uniquely defined by v = b1v1 + b2v2 + b3v3 and b1 + b2 +
b3 = 1. Similarly, each vector u is uniquely described by its directional coordinates, i.e., the triple (b1 − b′

1, b2 − b′
2, b3 − b′

3)

with (b1, b2, b3) and (b′
1, b

′
2, b

′
3) the barycentric coordinates of two points v and v′ such that u = v − v′ .

A polynomial p of degree d defined on T is conveniently represented by its Bézier form

p(v) =
∑

i+ j+k=d

ci jk Bd
i jk(v), Bd

ijk(v) := d!
i! j!k!bi

1b j
2bk

3,

where the Bd
ijk are referred to as the Bernstein basis polynomials of degree d and the ci jk are called the B-coefficients of p. 

We associate each B-coefficient ci jk to the domain point ξi jk := i
d v1 + j

d v2 + k
d v3. The disk of radius m around v1 is Dm(v1) :=

{ξi jk : i ≥ d − m}, and similarly for the other vertices.
For any differentiable function f : Ω −→ R and a vector u ∈ R

2 (not necessarily of unit length), we write

f u
v = ∇u f (v) := d

dt
f (v + tu)

∣∣
t=0
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