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a b s t r a c t 

Recently, discrete Morse vector fields have been shown to be useful in various applications. Analogous to 

the simplification of large meshes using edge contractions, one may want to simplify the cell complex 

K on which a discrete Morse vector field V ( K ) is defined. To this end, we define a gradient aware edge 

contraction operator for triangulated 2-manifolds with the following guarantee. If V ( K ) was generated by 

a specific persistence-based method, then the vector field that results from our contraction operator is 

exactly the same as the vector field produced by applying the same persistence-based method to the 

contracted complex. An implication of this result is that local operations on V ( K ) are sufficient to produce 

the persistence-based vector field on the contracted complex. Furthermore, our experiments show that 

the structure of the vector field is largely preserved by our operator. For example, 1-unstable manifolds 

remain largely unaffected by the contraction. This suggests that for some applications of discrete Morse 

theory, it is sufficient to use a contracted complex. 

Published by Elsevier Ltd. 

1. Introduction 

Morse theory has become a subject of interest due to its ability 

to completely describe the flow of a class of vector fields defined 

over a manifold [1] . Such a description is useful for scientific pur- 

poses, as it improves understanding of the behavior of the under- 

lying Morse function - a smooth function without any degenerate 

critical points. This description is called the Morse–Smale complex , 

and it is uniquely defined for a manifold-Morse function pair. A 

Morse–Smale complex is a decomposition of the manifold into re- 

gions of similar flow, called cells . Each point on the given manifold 

is either critical or lies on an integral line between a unique pair of 

critical points. An integral line is a path between (but not includ- 

ing) a pair of critical points with tangent vectors that agree with 

the gradient of the Morse function at all points. Hence, a cell in 

the Morse–Smale decomposition is precisely the set of all points 

in a manifold which lie on an integral line between two given crit- 

ical points. We include an example of a Morse–Smale complex in 

Fig. 1 . Such a topological characterization of vector fields is impor- 

tant in areas including fluid dynamics and aerodynamics, when it 

is necessary to work with continuous functions [2] . 

However, experimental data is not usually collected in the form 

of Morse functions. This makes applying smooth techniques prob- 

lematic. The first attempt at constructing a discrete version of the 

Morse–Smale complex was done by Edelsbrunner et. al. for piece- 
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wise linear 2-manifolds, but their techniques are fairly involved [3] . 

Forman’s discrete Morse theory, the focus of this paper, establishes 

an analog of the Morse–Smale complex for functions defined over 

cell complexes [4,5] . For simplicity, this paper only considers sim- 

plicial complexes. Key to discrete Morse theory is a class of func- 

tions called discrete Morse functions . Analogous to the smooth case, 

these functions induce a gradient vector field on their domain. For- 

man’s theory is strictly combinatorial, and most of its results per- 

tain to manipulating discrete vectors. No derivatives are required. 

Despite this, discrete Morse theory still contains a number of con- 

cepts analogous to structures in classical Morse theory. Among 

these are notions of critical simplices and gradient paths , which can 

be thought of as corresponding to critical points and integral lines, 

respectively. In the discrete case, the highest dimensional cells may 

serve as local maxima when they are critical, and critical vertices 

serve as local minima. When critical, all other simplices are the 

equivalent of saddles. Hence, gradient paths connect higher dimen- 

sional simplices to lower dimensional simplices. These gradient 

paths allow the computation of a Morse–Smale complex for tri- 

angulated manifolds, with structure resembling that of the smooth 

Morse–Smale complex. Forman’s theory has found applications in 

a variety of areas, including cosmology, terrain analysis, and road 

network reconstruction [6–10] . 

Discrete Morse functions are defined over all simplices in a sim- 

plicial complex, whereas scientific data can usually be thought of 

as a height function on a set of points. The canonical example of 

this is terrain modeling: on some collection of points, one has el- 

evation data, but no information on the behavior of the terrain 

between the sampled points. A simplicial complex can be gener- 
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Fig. 1. An example of a smooth Morse–Smale complex with four Morse cells 

bounded by black curves connecting a maximum (peaks) to two saddles and each 

saddle to a minimum (pit). 

ated over the terrain by taking some triangulation of the sampled 

points. These points are the vertices of the simplicial complex, and 

they are the only simplices in the complex that are associated with 

a function value. While interpolation methods could be used to as- 

sign function values to higher dimensional simplices, this will only 

be a discrete Morse function on the rarest of occasions. Various 

techniques have been proposed to compute a discrete Morse vec- 

tor field from an input height function defined over a complex’s 

vertex set [7,11–14] . We choose to use an algorithm presented by 

Bauer et. al. which, given any triangulated 2-manifold, outputs a 

discrete Morse gradient vector field on the triangulation [15] . This 

algorithm is advantageous in that it is simple (see [10] for further 

simplification) to implement and very intuitive. It takes as input 

two parameters: a filtration, or a total ordering on the simplices 

of K often referred to as ≺, and a tuning parameter, δ, which in- 

fluences the number of remaining critical simplices. When δ = ∞ , 

their algorithm is proven to output a discrete Morse vector field 

which minimizes the number of critical simplices. 

This δ value tunes the output according to the persistence asso- 

ciated with each edge. The idea behind persistence is that if K 0 is 

chosen to be an empty complex, and K i is the complex that results 

after adding the i th simplex under ≺ to K i −1 , then each added sim- 

plex either creates or destroys a homological class. Such a creation 

or destruction corresponds to a change in the topology of the com- 

plex. Persistent homology provides a description of this changing 

topology by capturing the lifetime – or the “persistence” – of the 

various classes. For a more thorough treatment of persistent ho- 

mology, we encourage the reader to consult [16] or [17] . Each edge 

is then either associated with the persistence of the class which 

it creates or destroys. The algorithm by Bauer et. al. leaves those 

edges with persistence ≥ δ as critical. 

Triangulated 2-manifolds, together with the discrete Morse gra- 

dient vector fields defined on them, can become quite large. An 

obvious approach to controlling size is to arbitrarily contract edges 

in the original manifold prior to computing the discrete Morse vec- 

tor field. Such a procedure is problematic, because a contraction 

operator that is oblivious to vector field dynamics may lead to a 

drastically different vector field on the contracted manifold. An al- 

ternative is to contract edges in the triangulation and modify the 

original vector field slightly to fit the new complex. To make con- 

traction as efficient as possible, it is important that the vector field 

only needs to be modified local to the contraction. Work in this 

Fig. 2. An example of unstable 1-manifolds on a terrain near Los Alamos, New 

Mexico before (left) and after (right) 40 0,0 0 0 edge contractions. Note that there 

is very little difference in the paths of the unstable manifolds. 

area was initiated by Iuricich and De Floriani, who established such 

a contraction operator in the context of storing a discrete Morse 

vector field at several resolutions [18] . However, their criteria for 

a permissible contraction are fairly strong, in that they disallow 

circumstances where contraction could be permitted. In particular, 

they do not permit contractions that destroy critical simplices. This 

paper establishes a contraction operator which subsumes their cri- 

teria and, more importantly, comes with additional mathematical 

guarantees. If one were to run the algorithm by Bauer et. al. on the 

contracted manifold with the same δ that generated the original 

discrete Morse vector field, then the output vector field is guaran- 

teed to be the same as the one which results from the contraction 

operator. The new operator is established in Section 4 , while a for- 

malization of the guarantee is in Section 5 . 

An unstable 1-manifold is the set of all simplices that can be 

reached by gradient paths originating at a critical edge. An exam- 

ple can be seen in Fig. 2 . Various authors have found uses for 

these manifolds [7–10,13] . These unstable manifolds largely pre- 

serve their structure under contraction. Hence, it is often sufficient 

to use a much coarser complex for the previous applications. In 

Section 6 , we demonstrate this approach on a road network recon- 

struction application as a proof of concept. In addition, the new 

contraction operator is more general than the state of the art, and 

experiments are presented comparing coarsest possible representa- 

tions. The paper concludes in Section 7 with a discussion on future 

directions for research. 

2. Discrete Morse theory 

We now provide background in Forman’s discrete Morse theory. 

For a more thorough treatment, we refer the reader to [4] or [5] . In 

this section, we define K to be a simplicial complex. Fundamental 

to discrete Morse theory are discrete Morse functions . A function 

f : K → R is a discrete Morse function if it satisfies the following 

two conditions for all simplices σ ∈ K : 

|{ τ < 1 σ | f (τ ) ≥ f (σ ) }| ≤ 1 (1) 

|{ τ > 1 σ | f (τ ) ≤ f (σ ) }| ≤ 1 (2) 

where we write τ < 1 σ or σ > 1 τ if τ is a facet (a face of codimen- 

sion 1) of σ . Forman proved that both of these quantities cannot 

be positive for the same simplex. 

Lemma 1. For every simplex σ ∈ K , |{ τ < 1 σ | f (τ ) ≥ f (σ ) }| = 0 or 

|{ τ > 1 σ | f (τ ) ≤ f (σ ) }| = 0 . 

These conditions also give a concept of a critical simplex. 

Definition 2. A simplex σ is critical if |{ τ < 1 σ | f (τ ) ≥ f (σ ) }| = 

0 and |{ τ > 1 σ | f (τ ) ≤ f (σ ) }| = 0 

Critical simplices will play a similar role in computing the 

Morse–Smale complex as they do in the smooth case. 
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