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a b s t r a c t 

A useful example of a Planar Face Complex (PFC) is a connected network of streets, each modeled by a 

zero-thickness curve. The union of these decomposes the plane into faces that may be topologically com- 

plex. The previously proposed rasterized representation of the PFC (abbreviated rPFC) (1) uses a fixed 

resolution pixel grid, (2) quantizes the geometry of the vertices and edges to pixel-resolution, (3) as- 

sumes that no street is contained in a single pixel, and (4) encodes the graph connectivity using a small 

and fixed number of bits per pixel by decomposing the exact topology into per-pixel descriptors. The 

hierarchical (irregular) version of the rPFC (abbreviated hPFC) proposed here improved on rPFC in sev- 

eral ways: (1) It uses an adaptively constructed tree to eliminate the “no street in a pixel” constraint of 

the rPFC, hence making it possible to represent exactly any PFC topology and (2) for PFCs of the models 

tested, and more generally for models with relatively large empty regions, it reduces the storage cost 

significantly. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Consider a planar graph, G, that is embedded in the plane and 

comprises a connected network of finite and possibly curved edges 

and their bounding vertices. For example, each edge may repre- 

sent a street and each vertex may represent a street junction. Their 

union decomposes the plane into faces that may be topologically 

complex. For example, G may have multi-edges (more than one 

edge joining any given pair of vertices). Furthermore, a face may 

contain, in its boundary, cracks (edges that bound a single face), 

dead-ends (vertices that bound a single edge—a crack), and loops 

(edges that start and end at the same vertex). The unbounded face 

is called exterior . An example is shown in Fig. 1 . We use the term 

Planar Face Complex (PFC) for such an arrangement. 

Many applications need to represent and to traverse a PFC. Ex- 

amples include street networks in Geographic Information System 

(GIS) [1] , geological models [2] , overlapping SVG elements [3] , and 

multi-material structures [4] . 

Different solutions have been proposed to represent PFCs. Some 

approaches describe the connectivity of the graph [5–7] explicitly. 

This may yield a high storage cost for complex graphs. Other ap- 

proaches use an image format (regular grid of pixels) to describe 
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a rasterized approximation of the PFC [8–11] , which assigns each 

pixel to a different face, without attempting to capture the topol- 

ogy inside the shared pixels that contains one or more edges. 

The recently proposed rasterized Planar Face Complex (rPFC) 

[12] unifies these approaches by defining a compact representa- 

tion of the topology of the PFC that decomposes it into per-pixel 

descriptors, each using a short string of bits to encode the topology 

of the intersection of the PFC with a pixel. 

The rPFC model has many advantages: (1) It represents graph 

connectivity exactly and hence supports exact topological graph 

traversal; (2) It provides spatial indexing to both quantized geom- 

etry and exact topology; (3) It can represent non-trivial topology 

in a pixel (such as dangling edges, multiple vertices and multiple 

connected components); (4) It requires only a few bits per pixel. 

However, the rPFC has a drawback: It cannot represent a graph 

that has an edge that fits entirely inside a pixel. Hence, to rep- 

resent a graph with some relatively small edges, we either must 

use a high-resolution grid (see Fig. 1 ), which increases storage cost, 

or must simplify the graph by collapsing small edges in a prepro- 

cessing step, which implies the loss of the original topology. Fur- 

thermore, when the rPFC encoding stores a topology descriptor for 

each private pixel (a pixel that lies entirely in a face), the rPFC 

storage of large clusters of private pixels is wasteful. 

1.1. Motivation 

Our overarching motivation is to reduce the storage size of 

this graph, while preserving the benefits provided by w rPFC 
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representation, namely (1) random access and traversal (RAT) at 

constant amortized time (CAT) cost and (2) constant cost localiza- 

tion of the edges and vertices that intersect any given pixel. We 

also wish to provide efficient support for distributed processing, 

window-stream processing, and progressive refinements. 

We believe that the above characteristics are important for nav- 

igation, query, and maintenance applications of huge databases of 

planar graphs, which may represent the geometry and connectivity 

of streets, rivers, or utility networks. 

Our second main motivation is to use the 2D representation as 

the main tool to define 3D compact representation. This paper is 

the first step, necessary for the definition of a compact representa- 

tion of 3D meshes. 

1.2. Contribution 

The high-level, novel contribution reported here is the combi- 

nation of a hierarchical representation with the rPFC (per-pixel) 

encoding of geometry and connectivity. In this paper, we define the 

hierarchical rasterized Planar Face Complex representation ( hPFC ) 

which addresses the drawback of the previous rPFC. 

The proposed hPFC is essentially a tree. Hence, our solution in- 

cludes a quadtree as a special case. At the coarsest level, it is an 

rPFC, A. But some of the pixels of A, instead of containing the bit- 

string that encodes the local topology of the PFC, contain an index 

to a refined rPFC of the portion of the PFC inside that pixel. Such 

a more detailed rPFC, B, may, in turn contain pixels which, each, 

refer to even finer rPFC, C, and so on recursively. 

This irregular representation allows us to remove the “no small 

edge” constraint imposed by the rPFC: When an edge fits entirely 

in a pixel, the pixel is subdivided. 

Moreover, using an irregular (hierarchical) grid allows to reduce 

the storage cost of large clusters of private pixels. 

For example, the rPFC shown in Fig. 1 uses a grid of 192 pixels 

and involves 79 crossings (points where an edge of G crosses a 

pixel border). A coarser grid would produce an invalid rasterization 

in which at least one edge is contained in a single pixel. As shown 

in Fig. 2 , using the irregular grid of an hPFC solves the problem: 

The same PFC may be encoded as an hPFC that uses only a total of 

42 pixels and involves only 30 crossings. 

1.3. Organization 

The paper is organized as follows. In Section. 2 , we review the 

rPFC model and discuss other relevant prior art. In Section. 3 , we 

present the hPFC model and the details of the operators needed 

to navigate through the PFC using its hPFC representation. In 

Section. 4 we give a compact encoding of hPFC that provides a 

good time-complexity for traversal operators, while allowing to 

navigate through the graph without needing to decode the whole 

data-structure, but only the current pixel. In Section. 5 , we present 

experimental results, comparing our new solution with the previ- 

ous regular version. 

2. Prior art 

2.1. Data-structures for polygonal meshes 

A variety of edge-based data structures have been proposed 

in order to represent polygonal meshes, such as Combinatorial 

Maps, Corner Table, Doubly Connected Edge List, Half-Edge, Surface 

Mesh... [5–7,13–19] . They differ in their storage cost, in the type of 

operators that they support, and in the topological restrictions that 

they impose on the mesh. Many are reviewed in [20,21] . 

These data structures provide Random Access and Traversal 

( RAT ) of the meshes, often in constant time, or sometimes in Con- 

stant Amortized Time ( CAT ). Their main drawback is to use a large 

number of bits per element (edge, vertex), which limits their ap- 

plicability and performance for complex meshes. 

Some solutions used rasterized images, where each pixel stores 

the color of the region that contains its center. The image can be 

compressed, for example by using RLE (Run Length Encoding). But 

the digitization does not represent street networks, removes all 

cracks and dead ends, and can disconnect regions. 

Rasterized images were used in [22] to accelerate the render- 

ing of antialiased vector graphics. That approach uses a coarse lat- 

tice in which each cell contains a variable-length encoding of the 

graphics primitives that overlap it. The proposed hPFC extends this 

previous work by capturing the connectivity (incidence and order- 

ing) of the graph in a constant-length per-cell format and hence 

providing support for RAT operators. 

In [9,23] , a solution stores the crossing vertices between the 

mesh and an inter-pixel grid, and recompute (explicitly or implic- 

itly) a simplified topology of the mesh. Such a representation can 

be used to accelerate Boolean operations [4] . But it only represents 

an approximated topological description of the mesh. 

2.2. Compact representations of polygonal meshes 

Several compression schemes propose to encode local mesh 

connectivity by using a few bits per element for polygon graphs 

[24,25] and for triangle meshes [7,26–32] . 

Often, the connectivity information is broken into a chunk per 

face, per edge, or per vertex. For example, the 2D version of Tet- 

streamer [33] organizes triangle faces into topological rings and 

divides connectivity information into one bit per edge (for some 

edges) and one or several bits per vertex. But extensions of this ap- 

proach to more general (PFC) graphs would be challenging and the 

representation more expensive. More importantly, such schemes 

assume that the bits of the mesh encoding is received in a spe- 

cific order. This compressed format must be decompressed first 

and converted into a more expensive format that is suitable for 

RAT in CAT. 

More recent representations offer a much low storage costs 

while still supporting RAT in CAT for the most common access and 

traversal operations. For example, the Zipper format is restricted to 

triangle meshes, but uses on average only 6 bits per triangle and 

can be constructed in linear space and time [34] . Such representa- 

tions rely on a specific ordering of vertices. The streamable version, 

Grouper [32] , of this approach stores about two vertex-references 

per triangle. 

2.3. Hierarchical representations of polygonal meshes 

Many hierarchical solutions have been defined in order to re- 

duce the memory space used in order to represent a mesh such 

as for example quadtrees [8,35] . [36] proposes a progressive mesh 

representation, a new scheme which allows to store and to trans- 

mit arbitrary triangle meshes. Several other hierarchical and pyra- 

midal models were defined and used for example to represent 

multiresolution terrain models [37] . In [38] , a compressed encod- 

ing of 3D triangular meshes is defined, based on a hierarchy and an 

encoding of split operators, which allows to encode both manifold 

meshes but also “triangle soups”. In [39] , a compressed random- 

access tree is used in order to represent spatially coherent data. 

But these representations are either for grid of pixels, or for trian- 

gle meshes. 

Quadtrees were also used to represent a set of points [40,41] or 

of line-segments [42–44] . These representations do not capture 

connectivity. The MX quadtree [45] does capture the connectivity 

of simple polygons, but does not support junction vertices with 

more than two incident edges. Hence, these previously proposed 
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