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a b s t r a c t 

In many applications, point set surfaces are acquired by 3D scanners. During this acquisition process, 

noise and outliers are inevitable. For a high fidelity surface reconstruction from a noisy point set, a fea- 

ture preserving point set denoising operation has to be performed to remove noise and outliers from 

the input point set. To suppress these undesired components while preserving features, we introduce an 

anisotropic point set denoising algorithm in the normal voting tensor framework. The proposed method 

consists of three different stages that are iteratively applied to the input: in the first stage, noisy vertex 

normals, are initially computed using principal component analysis, are processed using a vertex-based 

normal voting tensor and binary eigenvalues optimization. In the second stage, feature points are cate- 

gorized into corners, edges, and surface patches using a weighted covariance matrix, which is computed 

based on the processed vertex normals. In the last stage, vertex positions are updated according to the 

processed vertex normals using restricted quadratic error metrics. For the vertex updates, we add dif- 

ferent constraints to the quadratic error metric based on feature (edges and corners) and non-feature 

(planar) vertices. Finally, we show our method to be robust and comparable to state-of-the-art methods 

in several experiments. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

Point sets arise naturally in almost all kinds of three- 2 

dimensional acquisition processes, like 3D scanning. As early as 3 

1985, they have been recognized as fundamental shape represen- 4 

tations in computer graphics, [1] . Thus, they have manifold appli- 5 

cations e.g. in face recognition [2] , traffic accident analysis [3] , or 6 

archeology [4] . 7 

However, during the acquisition process, due to mechanical lim- 8 

itations and surrounding conditions, noise and outliers are in- 9 

evitably added to the point set. These artifacts have to be removed 10 

in a post-processing step to obtain a cleaned point set, which 11 

can be used in further steps like surface reconstruction, computer 12 

aided design (CAD), or 3D printing. There exists a variety of de- 13 

noising methods focused on removing outliers and noise from the 14 

input point set to create a high fidelity output. These methods do 15 

not only aim at removing the undesired components, but also try 16 

to preserve sharp features of the geometry. High frequency com- 17 

ponents like corners or edges should be preserved and not be 18 

smoothed out. This is a challenging task as both features and noise 19 
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are high frequency components and thus ambiguous in their na- 20 

ture. 21 

Most state-of-the-art denoising methods are designed to work 22 

on triangle meshes. Compared to this setup, working on point sets 23 

and preserving sharp features is more difficult as explicit connec- 24 

tivity information is not present. Also, we assume the input to 25 

be given without any normals. However, as point sets take up 26 

less storage space and as the surface reconstruction is easier on 27 

a noise-free point set, we aim for an intrinsic smoothing method 28 

to work directly on the noisy point set input. 29 

Our method is focused on the preservation of sharp features 30 

while removing noise and outliers from an input point set. The 31 

proposed algorithm follows an iterative three-step point set de- 32 

noising scheme. (1) Noisy vertex normals processing using a 33 

vertex-based normal voting tensor (NVT) and binary eigenvalues op- 34 

timization (BEO) similar to [5] . (2) Feature points detection using 35 

an anisotropic covariance matrix. For the update of vertex posi- 36 

tions, we use (3) a variation of the quadratic error norm adjusted 37 

to different kinds of feature points. Steps (1) to (3) are iteratively 38 

applied until a satisfactory output has been generated. 39 
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1.1. Related work 40 

1.1.1. Point-based methods 41 

In general, point sets appear as natural output of 3D scan de- 42 

vices. The increase in computational costs while processing polyg- 43 

onal meshes with growing size is partly responsible that points got 44 

recognized as primitives for surface representation, cf. [6] . One ma- 45 

jor drawback in this approach is the absence of connectivity in- 46 

formation, which sets the task to declare surface normals. Here, 47 

[6] especially proposes a definition utilizing surfels, which are 48 

points equipped with normals. Usually point clouds do not carry 49 

normals, so we have to rely on methods which determine these 50 

robustly and with high quality. The authors Mitra and Nguyen 51 

[7] suggest a calculation of point set normals and an analysis un- 52 

der consideration of density, neighborhood sizes, and the presence 53 

of noise. 54 

We are interested in point set denoising coupled with fea- 55 

ture preservation. There are several works approaching these two 56 

properties directly. A first one was published by Fleishman et al. 57 

[8] – serving as a representative despite the fact that it deals with 58 

meshes instead of point clouds. As it does not use the mesh infor- 59 

mation, so it can be transferred to the point set setting. They use 60 

a bilateral filtering of points in normal direction in local neighbor- 61 

hoods. Another one is the anisotropic smoothing of point sets [9] , 62 

where the authors use an anisotropic geometric curvature flow. Be- 63 

sides the high dependency on suitable neighborhoods, which the 64 

authors cannot compute directly, the proposed algorithm does not 65 

detect features explicitly, but incorporates feature detection into an 66 

anisotropic Laplacian. The more recent work [10] is based on the 67 

idea of sparsity methods and includes L 0 minimization. Originating 68 

from image denoising, they set up an energy consisting of the 3D 69 

signal to be optimized coupled with an L 0 optimization applied to 70 

a differential operator on the signal. 71 

Processing of normals, point positions, and an edge-aware up- 72 

sampling offers the opportunity for an iterative application. In this 73 

setting, we are going to compare our algorithm with that of [11] , 74 

called “moving robust principal component analysis” (MRPCA). The 75 

idea is – like the previous – based on sparsity methods, which 76 

takes sparsity-algorithms and adapt them to geometry processing 77 

problems. They perceive the point cloud as a collection of over- 78 

lapping two-dimensional subspaces and do not rely – in contrast 79 

to other procedures – on oriented normals as input. The method 80 

is robust against outliers and capable of denoising the point cloud 81 

while handling sharp features. 82 

Recently, Zheng et al. [12] proposed an extension of edge-aware 83 

image processing and mesh denoising to point clouds. In their 84 

four-staged approach, feature candidates are detected, employing a 85 

feature structure by the l 1 -medial skeleton, calculating and equip- 86 

ping these with multiple normals, and selecting guiding normals 87 

by using kNN patches with its normals being most consistent. In 88 

this terms, the algorithm is even capable of high intensive noise 89 

while preserving important geometric features. 90 

1.1.2. Surface reconstruction with feature preservation 91 

One of the processes most affected by noise and outliers in a 92 

point set is that of surface reconstruction. A thorough introduction 93 

is given in the survey [13] . All following techniques aim at preserv- 94 

ing features while simultaneously perform denoising in the surface 95 

reconstruction process. In the context of local smoothness priors, 96 

the moving least squares (MLS) approach has a major impact. De- 97 

veloped in large parts by Levin [14] , MLS underwent a lot of modi- 98 

fications. Guennebaud and Gross [15] modified the MLS idea by re- 99 

placing the concept of finding well-defined tangent planes by fit- 100 

ting spheres as higher order approximations to the surface. This 101 

change makes the method more robust – especially in sparsely 102 

sampled regions, where a well defined tangent plane might not 103 

exist. Their method is denoted as “algebraic point set surfaces” 104 

(APSS) and will serve as comparison to our algorithm. The method 105 

of Öztireli et al. [16] aims at overcoming the sensitivity of MLS to 106 

outliers and the effect of smoothing out small or sharp features. 107 

They combine MLS with local kernel regression to create a new im- 108 

plicit description of the surface, making it robust to noise, outliers, 109 

and even sparse sampling. Their method of “robust implicit mov- 110 

ing least squares” (RIMLS) will be the third algorithm we compare 111 

to. More recently, Chen et al. [17] set their focus on a new MLS for- 112 

malism using higher-order approximations – like APSS – incorpo- 113 

rating discrete non-oriented gradient fields, yielding a continuous 114 

implicit representation. 115 

Turning to hierarchical partitioning, Ohtake et al. [18] propose 116 

“multi-level partitioning of unity implicits” (MPU). Their technique 117 

consists of an octree-based top-down structure, where points in a 118 

cell and nearby are approximated by either a bivariate quadratic 119 

polynomial or an algebraic trivariate quadric. An adjustment pa- 120 

rameter for the level of smoothness guarantees the handling of 121 

noise with respect to an error residual tolerance. 122 

Considering piecewise smooth priors and partition based meth- 123 

ods, Fleishman et al. [19] concentrate with their robust moving 124 

least squares (RMLS) on the handling of sharp features. They use 125 

the robust statistics tool of forward-search paradigm to choose 126 

small sets of points excluding outliers, continuing through the 127 

cloud, and evaluating observations monitored by statistical esti- 128 

mates. Wang et al. [20] robustly compute a feature preserving nor- 129 

mal field by mean-shift clustering and a least median of squares 130 

(LMS) regression scheme, providing local partitions, to which edge- 131 

preserving smoothing is applied by fitting multiple quadrics. Due 132 

to the locality, feature fragmentation at sharp edges may occur. 133 

Taking sparsity and neighboring normals into account, Avron 134 

et al. [21] use global L 1 optimization on these normals, observ- 135 

ing that differences between them should be sparse, yet large val- 136 

ues should reflect sharp features. Similar to the approach in RIMLS, 137 

[22] suggests the edge-aware resampling (EAR) of the point cloud. 138 

This is a feature-sensitive method under the guidance of the lo- 139 

cally optimal projection (LOP) [23] in a two-staged approach, start- 140 

ing their robust smoothing and resampling process in regions with 141 

similar normal distribution, while approaching the edges in terms 142 

of both smoothing and resampling in a second step. 143 

1.2. Contribution 144 

On a noisy point set, it is a challenging task to decouple noise 145 

components and sharp features, which is essential for a noise-free 146 

point set reconstruction. As shown in Fig. 1 , our algorithm consists 147 

of three different stages, which are iteratively applied until a satis- 148 

factory output has been computed. In the first stage, which is ver- 149 

tex normal filtering, we extend the concept of face normal process- 150 

ing of Yadav et al. [5] to the more general setup of vertex normal 151 

processing. Although our vertex normal processing is similar to the 152 

face normal processing of Yadav et al. [5] , we define a vertex-based 153 

Normal Voting Tensor (NVT) based on the variation of vertex nor- 154 

mals. In terms of noise sensitivity, vertex normals are more sensi- 155 

tive compared to face normals. Therefore, we modify the weight- 156 

ing scheme in the neighborhood selection to make the algorithm 157 

robust against different levels of noise. Noise and sharp features 158 

are decoupled using the spectral analysis of the vertex-based NVT 159 

and noise components are suppressed using Binary Eigenvalues Op- 160 

timization (BEO). In the second stage, we introduce an anisotropic 161 

covariance matrix using the filtered vertex normals to detect fea- 162 

ture points (edges and corners) robustly on the noisy input point 163 

set. In the last stage, we update the vertex positions based on 164 

quadratic error metrics. A corresponding quadratic error metric is 165 

used based on different feature points. The proposed vertex update 166 
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