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a b s t r a c t 

We describe a guided proceduralization framework that optimizes geometry processing on architectural 

input models to extract target grammars. We aim to provide efficient artistic workflows by creating pro- 

cedural representations from existing 3D models, where the procedural expressiveness is controlled by 

the user. Architectural reconstruction and modeling tasks have been handled as either time consuming 

manual processes or procedural generation with difficult control and artistic influence. We bridge the gap 

between creation and generation by converting existing manually modeled architecture to procedurally 

editable parametrized models, and carrying the guidance to procedural domain by letting the user define 

the target procedural representation. Additionally, we propose various applications of such procedural 

representations, including guided completion of point cloud models, controllable 3D city modeling, and 

other benefits of procedural modeling. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

The recent popularity of 3D environments and models for aug- 2 

mented and virtual reality environments puts high expectations on 3 

the complexity and quality of such assets, with a desire to repli- 4 

cate the real world. Urban planning, remote sensing, and 3D recon- 5 

struction researchers have been focusing on bringing the digitized 6 

and physical world together, with an emphasis on urban models. In 7 

parallel to the demand for city-scale 3D urban models, the avail- 8 

ability of 3D data acquisition systems and image-based solutions 9 

have also increased. Although using the 3D data obtained from dif- 10 

ferent sources such as images, laser scans, time-of-flight cameras, 11 

and manual modeling databases is an option, the results of these 12 

approaches usually do not expose an easily modifiable model with 13 

structural parts and thus obstructs architectural reconstruction and 14 

modeling tasks. 15 

Aiming for automatic generation, procedural representations are 16 

highly parameterized, compact, and powerful, especially in urban 17 

domain [1,2] . The pioneering work of Parish and Mueller [3] , and 18 

subsequent urban modeling papers (e.g., see surveys [4,5] ) fo- 19 

cused on forward and inverse procedural modeling approaches. 20 

While procedural modeling (PM) accomplishes providing architec- 21 

tural structures of required detail, creating complex realistic build- 22 
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ing templates needs time, extensive coding, and significant domain 23 

expertise. Inverse procedural modeling (IPM) addresses the short- 24 

comings of procedural modeling by controlling and adapting the 25 

procedural generation to a given target model [6,7] . In this sense, 26 

IPM can be regarded as an optimization problem over the space of 27 

derivations, to guide procedural modeling. 28 

We want to carry this problem one step further by (1) removing 29 

the dependency on the space of derivations, and (2) switching the 30 

control domain. Proceduralization [8] takes care of the first moti- 31 

vation, by converting existing geometric models into a procedural 32 

representation, with no a priori knowledge about the underlying 33 

grammar. 34 

However, as this procedural representation aims to serve as 35 

the minimal description of the model, evaluating for the best de- 36 

scription (e.g., the description with the best expressiveness) re- 37 

quires determining its Kolmogorov complexity, which is uncom- 38 

putable. Our solution is to let the user guide the system to find 39 

the best grammar per use case. This also handles the second moti- 40 

vation by enabling the user to control the characteristics of the ex- 41 

tracted grammar. In other words, inverse procedural modeling en- 42 

hances procedural modeling by producing the best instance, while 43 

guided proceduralization enhances proceduralization by producing 44 

the best grammar. 45 

In this paper, we focus on guided proceduralization for 3D ur- 46 

ban modeling and reconstruction of architectural meshes, building 47 

point clouds, and textured urban areas. Our framework provides 48 

a feedback loop which under user control seeks out the hidden 49 
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Fig. 1. Guided proceduralization. (a) The input model of Taipei 101 , (b –e) colored 

procedural elements ordered by increasing target parameter values (e.g., number of 

components N c and number of similarity groups N l ). As the user specification on 

the target grammar changes, different grammars of the model are revealed. Insets 

indicate representative instances of rules and terminals. 

high-level hierarchical and structural information coherent with 50 

the target specification and the application objectives ( Fig. 1 ). Al- 51 

though guided procedural modeling approaches [9,10] , and proce- 52 

duralization methods [11,12] have been introduced, we propose the 53 

first approach to guide the proceduralization process using speci- 54 

fications of a target grammar. We start with definitions and func- 55 

tions for guided proceduralization, then introduce geometry pro- 56 

cessing and grammar extraction steps of generalized procedural- 57 

ization in the controlled setting. Afterwards, we demonstrate ap- 58 

plications of the obtained grammars in completion, reconstruction, 59 

synthesis, modeling, querying, simplification, and rendering. Q2 
60 

Altogether, our main contributions include: 61 

• a generalized guided proceduralization framework that extracts 62 

procedural representations across different 3D data types, 63 

• an optimization process to evaluate and diversify the grammars 64 

output by our proceduralization, 65 

• a feedback loop to enable guidance to control proceduraliza- 66 

tion for obtaining the most expressive grammar and for various 67 

aims, and 68 

• several applications of the guided proceduralization framework 69 

for editing and merging various models. 70 

Using our controlled proceduralization framework, we have ex- 71 

tracted procedural models from complex polygonal models (i.e., 72 

Turning Torso, Taipei 101, Saint Basil’s Cathedral), from point 73 

clouds of architectural scenes (i.e., Staatsoper Hannover, Wilhelm 74 

Busch Museum), and from textured massive city models (i.e., 75 

180 km 

2 metropolitan area of New York with more than 40 0 0 76 

buildings, San Francisco, Chicago). We have used these models to 77 

create more complete reconstructions, controlled procedural gen- 78 

eration, and easier, efficient, and structure-aware urban modeling. 79 

2. Related work 80 

2.1. Procedural modeling 81 

Procedural modeling P generates a model M from a given gram- 82 

mar G ( P (G ) = M). Starting with the pattern language of Alexander 83 

et al. [13] , PM has been utilized by many approaches [14–17] in ur- 84 

ban settings. More PM approaches are surveyed by Smelik et al. [4] . 85 

However, coding procedural details is a cumbersome process need- 86 

ing domain expertise and codification skills. Interactive editing sys- 87 

tems, such as Lipp et al. [18] and CityEngine, have been added on 88 

top of existing procedural systems to facilitate grammar editing. 89 

These can be considered as first guidance solutions for procedural 90 

systems. 91 

2.2. Inverse procedural modeling 92 

In contrast, inverse procedural modeling discovers the set of pa- 93 

rameters, probabilities, and rules from a given grammar to gener- 94 

ate a target instance [5] ( P (G, T M 

) = M opt as per the second row of 95 

Fig. 2 ). Initial works provided semi-automatic and automatic build- 96 

ing (e.g., [19–21] ) and facade solutions (e.g., [22–26] ). Given some 97 

exemplar derivations and labeled designs, Talton et al. [27] use 98 

Bayesian induction to capture probabilistic grammars. Similarly, 99 

Monte Carlo Markov Chain (MCMC) optimization is used to dis- 100 

cover the optimized parameters for a target instance of a proce- 101 

dural representation of buildings (Talton et al. [28] and Nishida 102 

et al. [29] ) and cities (Vanegas et al. [30] ). Most of those solutions 103 

support synthesizing similar models that best fit the given guid- 104 

ance. However they rely on pre-segmented components, known 105 

grammars, and known layouts to generate the derivation space. 106 

This is an important drawback, since it constrains reconstruction 107 

and modeling to the limited space of the initial grammar. In con- 108 

trast, we want to carry the guidance from the geometric space to 109 

the procedural space, thus the desired control is defined rather than 110 

the desired model . 111 

2.3. Proceduralization 112 

Proceduralization starts with only geometry and no knowledge 113 

on the grammar ( P −1 (M) = G as per the third row of Fig. 2 ). Some 114 

image based techniques use deep learning for extracting simple 115 

and-or template grammars [31] , or generative schemes [32] . In ur- 116 

ban scenes, Bokeloh et al. [33] use partially symmetric structures 117 

to search for transformations that map one partition to another 118 

based on r -similar surfaces. It enables building model synthesis 119 

though not formally yielding a procedural model. For point clouds, 120 

Toshev et al. [21] segment a building into planar parts and join 121 

them using a hierarchical representation that separates roof, rest 122 

of the building, and non-building structures. Demir et al. [11] fo- 123 

cus on point clouds, and user control is explicit in the geomet- 124 

ric domain at the semi-automatic segmentation step. Martinovic 125 

et al. [6] use Bayesian induction to obtain facade grammars, and 126 

Kalojanov et al. [34] divide the input structure into microtiles to 127 

detect partial similarities. Demir et al. [12] introduces procedural- 128 

ization, automatically creating a set of terminals, non-terminals, 129 

and rules (blue path in Fig. 3 ). Although evaluating the expressive- 130 

ness of this automatic encoding is uncomputable (see Section 6.1 ), 131 

the expressiveness of a fixed grammar per model is still limited 132 

with regard to the modeler’s use case. Thus, their approach has 133 

smaller tolerance for noise, directed by the one-pass segmentation 134 

and labeling, is not flexible for different use-cases, works only on 135 

triangular models, and does not allow user control (for the gram- 136 

mar generation). 137 

2.4. Guided proceduralization 138 

In contrast, the key motivation behind our research is that, if 139 

we have some insights about the desired grammar, we can evalu- 140 

ate the proceduralization outputs to suggest candidate grammars. 141 

This creates a pioneering framework that is the first to provide 142 

guided proceduralization for synthesis of arbitrary 3D architec- 143 

tural structures ( P −1 (M, T ) = G as per the last row of Fig. 2 ). As 144 

guidance in procedural modeling enables finding the best instance , 145 

guidance in proceduralization enables finding the best grammar . 146 

This guidance enables the procedural representation to be opti- 147 

mized by user specification (orange path in Fig. 3 ), so that the re- 148 

sulting grammars are robust to model noise, flexible for different 149 
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