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a b s t r a c t 

This article gives an introduction to optimal transport, a mathematical theory that makes it possible to 

measure distances between functions (or distances between more general objects), to interpolate between 

objects or to enforce mass/volume conservation in certain computational physics simulations. Optimal 

transport is a rich scientific domain, with active research communities, both on its theoretical aspects and 

on more applicative considerations, such as geometry processing and machine learning. This article aims 

at explaining the main principles behind the theory of optimal transport, introduce the different involved 

notions, and more importantly, how they relate, to let the reader grasp an intuition of the elegant theory 

that structures them. Then we will consider a specific setting, called semi-discrete, where a continuous 

function is transported to a discrete sum of Dirac masses. Studying this specific setting naturally leads 

to an efficient computational algorithm, that uses classical notions of computational geometry, such as a 

generalization of Voronoi diagrams called Laguerre diagrams. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

This article presents an introduction to optimal transport, and 2 

then focuses on a specific class of numerical methods (semi- 3 

discrete). Before diving into the subject, we find it important to 4 

mention that besides semi-discrete methods, many other numeri- 5 

cal methods exist, the reader is referred to [1] and [2] for a com- 6 

plete overview. We also mention that many alternatives exist for 7 

comparing and interpolating between functions, such as Reproduc- 8 

ing Kernel Hilbert Space for measures, and diffeomorphism meth- 9 

ods for functions and shapes. 10 

This article summarizes and complements a series of confer- 11 

ences given by B. Lévy between 2014 and 2017 on semi-discrete 12 

optimal transport. The presentations stays at an elementary level, 13 

that corresponds to a computer scientist’s vision of the problem. 14 

In the article, we stick to using standard notions of analysis (func- 15 

tions, integrals) and linear algebra (vectors, matrices), and give an 16 

intuition of the notion of measure. The main objective of the pre- 17 

sentation is to understand the overall structure of the reasoning 1 , 18 
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1 Teach principles, not equations. [R. Feynman] 

and to follow a continuous path from the theory to an efficient 19 

algorithm that can be implemented in a computer. 20 

Optimal transport, initially studied by Monge, [3] , is a very gen- 21 

eral mathematical framework that can be used to model a wide 22 

class of application domains. In particular, it is a natural formula- 23 

tion for several fundamental questions in computer graphics [4–6] , 24 

because it makes it possible to define new ways of comparing func- 25 

tions, of measuring distances between functions and interpolating 26 

between two (or more) functions: 27 

Comparing functions. Consider the functions f 1 , f 2 and f 3 in Fig. 1 . 28 

Here we have chosen a function f 1 with a wildly oscillating graph, 29 

and a function f 2 obtained by translating the graph of f 1 along the 30 

x axis. The function f 3 corresponds to the mean value of f 1 (or f 2 ). 31 

If one measures the relative distances between these functions us- 32 

ing the classical L 2 norm, that is d L 2 ( f, g) = 

∫ 
( f (x ) − g(x )) 2 dx, one 33 

will find that f 1 is nearer to f 3 than f 2 . Optimal transport makes 34 

it possible to define a distance that will take into account that 35 

the graph of f 2 can be obtained from f 1 through a translation (like 36 

here), or through a deformation of the graph of f 1 . From the point 37 

of view of this new distance, the function f 1 will be nearer to f 2 38 

than to f 3 . 39 

Interpolating between functions:. Now consider the functions u and 40 

v in Fig. 2 . Here we suppose that u corresponds to a certain phys- 41 

ical quantity measured at an initial time t = 0 and that v corre- 42 

sponds to the same phenomenon measured at a final time t = 1 . 43 
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Fig. 1. Comparing functions: one would like to say that f 1 is nearer to f 2 than f 3 , 

but the classical L 2 norm “does not see” that the graph of f 2 corresponds to the 

graph of f 1 slightly shifted along the x axis. 

Fig. 2. Interpolating between two functions: linear interpolation makes a hump 

disappear while the other hump appears; displacement interpolation, stemming 

from optimal transport, will displace the hump as expected. 

The problem that we consider now consists in reconstructing what 44 

happened between t = 0 and t = 1 . If we use linear interpolation 45 

( Fig. 2 , top-right), we will see the left hump progressively dis- 46 

appearing while the right hump progressively appears, which is 47 

not very realistic if the functions represent for instance a prop- 48 

agating wave. Optimal transport makes it possible to define an- 49 

other type of interpolation (Mc. Cann’s displacement interpolation, 50 

Fig. 2 , bottom-right), that will progressively displace and morph 51 

the graph of u into the graph of v . 52 

Optimal transport makes it possible to define a geometry of a 53 

space of functions 2 , and thus gives a definition of distance in this 54 

space, as well as means of interpolating between different func- 55 

tions, and in general, defining the barycenter of a weighted family 56 

of functions, in a very general context. Thus, optimal transport ap- 57 

pears as a fundamental tool in many applied domains. In computer 58 

graphics, applications were proposed, to compare and interpolate 59 

objects of diverse natures [6] , to generate lenses that can concen- 60 

trate light to form caustics in a prescribed manner [7,8] . Moreover, 61 

optimal transport defines new tools that can be used to discretize 62 

Partial Differential Equations, and define new numerical solution 63 

mechanisms [9] . This type of numerical solution mechanism can 64 

be used to simulate for instance fluids [10] , with spectacular ap- 65 

plications and results in computer graphics [11] . 66 

The two sections that follow are partly inspired by [12] , [13] , 67 

[14] and [15] , but stay at an elementary level. Here the main goal 68 

is to give an intuition of the different concepts, and more impor- 69 

tantly an idea of the way the relate together. Finally we will see 70 

how they can be directly used to design a computational algorithm 71 

with very good performance, that can be used in practice in sev- 72 

eral application domains. 73 

2. Monge’s problem 74 

The initial optimal transport problem was first introduced and 75 

studied by Monge, right before the French revolution [3] . We first 76 

give an intuitive idea of the problem, then quickly introduce the 77 

notion of measure , that is necessary to formally state the problem 78 

in its most general form and to analyze it. 79 

2.1. Intuition 80 

Monge’s initial motivation to study this problem was very prac- 81 

tical: supposing you have an army of workmen, how can you trans- 82 

2 or more general objects, called probability measures, more on this later. 

Fig. 3. Given two terrains defined by their height functions u and v , symbolized 

here as gray levels, Monge’s problem consists in transforming one terrain into the 

other one by moving matter through an application T . This application needs to 

satisfy a mass conservation constraint. 

Fig. 4. Transport from a function (gray levels) to a discrete point-set (blue disks). 

form a terrain with an initial landscape into a given desired target 83 

landscape, while minimizing the total amount of work? 84 

Monge’s initial problem statement was as follows: 85 

inf 
T : X→ X 

∫ 
X 

c(x, T (x )) u (x ) dx 

subject to: 

∀ B ⊂ X, 
∫ 

T −1 (B ) 

u (x ) dx = 

∫ 
B 

v (x ) dx 

where X is a subset of R 

2 , u and v are two positive functions de- 86 

fined on X and such that ∫ X u ( x ) dx = 

∫ 
Y v (x ) dx, and c ( · , · ) is a 87 

convex distance (the Euclidean distance in Monge’s initial problem 88 

statement). 89 

The functions u and v represent the height of the current land- 90 

scape and the height of the target landscape respectively (symbol- 91 

ized as gray levels in Fig. 3 ). The problem consists in finding (if it 92 

exists) a function T from X to X that transforms the current land- 93 

scape u into the desired one v , while minimizing the product of 94 

the amount of transported earth u ( x ) with the distance c ( x , T ( x )) 95 

to which it was transported. Clearly, the amount of earth is con- 96 

served during transport, thus the total quantity of earth should be 97 

the same in the source and target landscapes (the integrals of u 98 

and v over X should coincide). This global matter conservation con- 99 

straint needs to be completed with a local one. The local matter 100 

conservation constraint enforces that in the target landscape, the 101 

quantity of earth received in any subset B of X corresponds to what 102 

was transported here, that is the quantity of earth initially present 103 

in the pre-image T −1 (B ) of B under T . Without this constraint, one 104 

could locally create matter in some places and annihilate matter in 105 

other places in a counterbalancing way. A map T that satisfies the 106 

local mass conservation constraint is called a transport map . 107 

2.2. Monge’s problem with measures 108 

We now suppose that instead of a “target landscape”, we wish 109 

to transport earth (or a resource) towards a set of points (that will 110 

be denoted by Y for now on), that represent for instance a set of 111 

factories that exploit a resource, see Fig. 4 . Each factory wishes to 112 
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